WWOX is a gene that spans an extremely large chromosomal region. It is derived from within chromosomal band 16q23.2 which is a region with frequent deletions and other alterations in a variety of different cancers. This chromosomal band also contains the FRA16D common fragile site (CFS). CFSs are chromosomal regions found in all individuals which are highly unstable. WWOX has also been demonstrated to function as a tumor suppressor that is involved in the development of many cancers. Two other highly unstable CFSs, FRA3B (3p14.2) and FRA6E (6q26), also span extremely large genes, FHIT and PARK2, respectively, and these two genes are also found to be important tumor suppressors. There are a number of interesting similarities between these three large CFS genes. In spite of the fact that they are derived from some of the most unstable chromosomal regions in the genome, they are found to be highly evolutionarily conserved and the chromosomal region spanning the mouse homologs of both WWOX and FHIT are also CFSs in mice. Many of the other CFSs also span extremely large genes and many of these are very attractive tumor suppressor candidates. WWOX is therefore a member of a very interesting family of very large CFS genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935220 | PMC |
http://dx.doi.org/10.1177/1535370214565992 | DOI Listing |
Co-existing neuropathological comorbidities have been repeatedly reported to be extremely common in subjects dying with dementia due to Alzheimer disease. As these are likely to be additive to cognitive impairment, and may not be affected by molecularly-specific AD therapeutics, they may cause significant inter-individual response heterogeneity amongst subjects in AD clinical trials. Furthermore, while originally noted for the oldest old, recent reports have now documented high neuropathological comorbidity prevalences in younger old AD subjects, who are more likely to be included in clinical trials.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Structural Chemistry. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
The integration of hydrogen-bonded organic frameworks (HOFs) with flexible electronic technologies offers a promising strategy for monitoring detailed health information, owing to their inherent porosity, excellent biocompatibility, and tunable catalytic capabilities. However, their application in wearable and real-time health monitoring remains largely unexplored, primarily due to the mechanical mismatch between the traditionally fragile HOFs particles and the softness of human skin. Herein, this study demonstrates an epidermal biosensor that maintains reliable sensing capability even under extreme deformation and complex environmental conditions by integrating HOFs films with wavy bioelectrodes.
View Article and Find Full Text PDFAm J Case Rep
January 2025
Department of Neonatology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, China.
BACKGROUND Cleidocranial dysplasia (CCD) is a rare (1: 1 000 000) autosomal dominant congenital skeletal dysplasia characterized by widely patent calvarial sutures, clavicular hypoplasia, supernumerary teeth, and short stature. Only a minority of the cases are diagnosed early after birth. We present another case of proven CCD presenting with typical neonatal phenotype to promote awareness of this rare disorder.
View Article and Find Full Text PDFNat Commun
January 2025
Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France.
The main obstacle to large scale quantum computing are the errors present in every physical qubit realization. Correcting these errors requires a large number of additional qubits. Two main avenues to reduce this overhead are (i) low-density parity check (LDPC) codes requiring very few additional qubits to correct errors (ii) cat qubits where bit-flip errors are exponentially suppressed by design.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!