Gene therapy is a potential method for treating a large range of diseases. Gene vectors are widely used in gene therapy for promoting the gene delivery efficiency to the target cells. Here, gold nanoparticles (AuNPs) coated with dimethyldioctadecylammonium bromide (DODAB)/dioleoylphosphatidylethanolamine (DOPE) are synthesized using a facile method for a new gene vector (DODAB/DOPE-AuNPs), which possess 3- and 1.5-fold higher transfection efficiency than those of DODAB-AuNPs and a commercial transfection agent, respectively. Meanwhile, it is nontoxic with concentrations required for effective gene delivery. Imaging and quantification studies of cellular uptake reveal that DOPE increases gene copies in cells, which may be attributed to the smaller size of AuNPs/DNA complexes. The dissociation efficiency of DNA from the endocytic pathway is quantified by incubating with different buffers and investigated directly in the cells. The results suggest that DOPE increases the internalization of AuNPs/DNA complexes and promotes DNA release from early endosomes for the vector is sensitive to the anionic lipid membrane and the decreasing pH along the endocytic pathway. The new vector contains the potential to be the new alternative as gene delivery vector for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201402470DOI Listing

Publication Analysis

Top Keywords

gene delivery
16
gene
9
anionic lipid
8
gene therapy
8
dope increases
8
aunps/dna complexes
8
endocytic pathway
8
lipid ph-sensitive
4
ph-sensitive liposome-gold
4
liposome-gold nanoparticle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!