Hydrogen bonding in aprotic solvents, a new strategy for gelation of bioinspired catecholic copolymers with N-isopropylamide.

Macromol Rapid Commun

College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China; Chonbuk National University, School of Semiconductor and Chemical Engineering, Baekjero 567, Deokjin-gu, Jeonju, Jeonbuk, 561-756, Republic of Korea; Islamic Azad University, Omidiyeh Branch, Department of Polymer, 63731-93719, Omidiyeh, Iran; Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, 27599-3290, USA.

Published: March 2015

AI Article Synopsis

  • The copolymers of N-isopropylacrylamide and dopamine methacrylate can create a reversible, self-healing 3D network in non-polar solvents primarily through hydrogen bonding.
  • The study uses UV-vis and (1) H NMR spectroscopy to analyze the reactivity and hydrogen bonding of catechol groups, while rheological tests assess the transition from sol to gel and the material's self-healing abilities.
  • The resulting organogel can encapsulate drugs, allowing for controlled, dual-targeted drug delivery, which slows down release rates through enhanced molecular interactions and increased material rigidity.

Article Abstract

Copolymers of N-isopropylacrylamide (NIPAM) and dopamine methacrylate can establish a reversible, self-healing 3D network in aprotic solvents based on hydrogen bonding. The reactivity and hydrogen bonding formation of catechol groups in copolymer chains are studied by UV-vis and (1) H NMR spectroscopy, while reversibility from sol to gel and inverse as well as self-healing properties are tested rheologically. The produced reversible organogel can self-encapsulate physically interacting or chemically bonded solutes such as drugs due to thermosensitivity of the used copolymer. This system offers dual-targeted and controlled drug delivery and release-by slowing down release kinetics by supramolecular bonding of the drug and by reducing diffusion rates due to modulus increase.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201400501DOI Listing

Publication Analysis

Top Keywords

hydrogen bonding
12
aprotic solvents
8
bonding aprotic
4
solvents strategy
4
strategy gelation
4
gelation bioinspired
4
bioinspired catecholic
4
catecholic copolymers
4
copolymers n-isopropylamide
4
n-isopropylamide copolymers
4

Similar Publications

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.

View Article and Find Full Text PDF

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

Apurinic/Apyrimidinic (AP)-sites are common and highly mutagenic DNA lesions that can arise spontaneously or as intermediates during Base Excision Repair (BER). The enzyme apurinic/apyrimidinic endonuclease 1 (APE1) initiates repair of AP-sites by cleaving the DNA backbone at the AP-site via its endonuclease activity. Here, we investigated the functional role of the APE1 active site residue N174 that contacts the AP-site during catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!