Nutrient levels modify saltmarsh responses to increased inundation in different soil types.

Mar Environ Res

Alma Mater Studiorum - Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), Italy. Electronic address:

Published: March 2015

Saltmarshes have been depleted historically, and cumulative stressors threaten their future persistence. We examined experimentally how nutrient availability (high vs. low) affects the responses of Spartina maritima to increased inundation in two mineral soil types (low vs. medium organic). Increased inundation, one of the effects of accelerated sea level rise, had negative effects on most plant growth parameters, but the magnitude varied with soil and nutrient levels, and between plants from different locations. Average differences between inundation treatments were largest at high nutrient conditions in low organic matter soils. We conclude that saltmarsh vegetation would be more drastically affected by increased inundation in low than in medium organic matter soils, and especially in estuaries already under high nutrient availability. This knowledge enhances the prediction of changes at the foreshore of saltmarshes related to sea level rise, and the development of site-specific conservation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2014.12.003DOI Listing

Publication Analysis

Top Keywords

increased inundation
16
nutrient levels
8
soil types
8
nutrient availability
8
low medium
8
medium organic
8
sea level
8
level rise
8
high nutrient
8
organic matter
8

Similar Publications

Tidal marshes can contribute to nature-based shoreline protection by reducing the wave load onto the shore and reducing the erosion of the sediment bed. To implement such nature-based shoreline erosion protection requires the ability to quickly restore or create highly stable and erosion-resistant tidal marshes at places where they currently do not yet occur. Therefore, we aim to identify the drivers controlling the rate by which sediment stability builds up in young pioneer marshes.

View Article and Find Full Text PDF

Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation.

View Article and Find Full Text PDF

Premise: Five C grasses (Bouteloua curtipendula, Schizachyrium scoparium, Andropogon gerardii, Sorghastrum nutans, Spartina pectinata) dominate different portions of a moisture gradient from dry to wet tallgrass prairies in the Upper Midwest of the United States. We hypothesized that their distributions may partly reflect differences in flooding tolerance and context-specific growth relative to each other.

Methods: We tested these ideas with greenhouse flooding and drought experiments, outdoor mesocosm experiments, and a natural experiment involving a month-long flood in two wet-mesic prairies.

View Article and Find Full Text PDF

Hurricanes, industrial animal operations, and acute gastrointestinal illness in North Carolina, USA.

Environ Res Health

March 2025

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States of America.

North Carolina (NC) ranks third among US states in both hog production and hurricanes. NC's hogs are housed in concentrated animal feeding operations (CAFOs) in the eastern, hurricane-prone part of the state. Hurricanes can inundate hog waste lagoons, transporting fecal bacteria that may cause acute gastrointestinal illness (AGI).

View Article and Find Full Text PDF

Estimation of potential denitrification and its spatiotemporal dynamics in seasonally inundated geomorphic units of a large tropical river using satellite data.

Sci Total Environ

January 2025

Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands; Department of Ecoscience, Freshwater Ecology, University of Aarhus, Aarhus, Denmark. Electronic address:

Article Synopsis
  • Denitrification in large tropical rivers plays a crucial role in nitrogen retention, but accurate measurements for seasonal and geomorphological comparisons are challenging.
  • Researchers tested a hypothesis linking potential denitrification rates (PDR) to soil and vegetation characteristics in various geomorphic units (GUs) along a section of the Padma River in Bangladesh.
  • They found significant relationships between PDR, vegetation cover, and soil moisture, using remote sensing data to model PDR across different seasons, concluding that certain GUs, particularly vegetation islands and bars, are key areas for denitrification.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!