Pancreatic β-cells with severely knocked down cytosolic malic enzyme (ME1) and mitochondrial NAD(P) malic enzyme (ME2) show normal insulin secretion. The mitochondrial NADP malic enzyme (ME3) is very low in pancreatic β-cells, and ME3 was previously thought unimportant for insulin secretion. Using short hairpin RNAs that targeted one or more malic enzyme mRNAs in the same cell, we generated more than 25 stable INS-1 832/13-derived insulin cell lines expressing extremely low levels of ME1, ME2, and ME3 alone or low levels of two of these enzymes in the same cell line. We also used double targeting of the same Me gene to achieve even more severe reduction in Me1 and Me2 mRNAs and enzyme activities than we reported previously. Knockdown of ME3, but not ME1 or ME2 alone or together, inhibited insulin release stimulated by glucose, pyruvate or 2-aminobicyclo [2,2,1]heptane-2-carboxylic acid-plus-glutamine. The data suggest that ME3, far more than ME1 or ME2, is necessary for insulin release. Because ME3 enzyme activity is low in β-cells, its role in insulin secretion may involve a function other than its ME catalytic activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347290 | PMC |
http://dx.doi.org/10.1210/me.2014-1249 | DOI Listing |
3 Biotech
January 2025
Department of Agronomy, Abdul Wali Khan University, Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biotechnology of Medicinal Plants, University of Ribeirão Preto, Ribeirão Preto 14096-900, Brazil.
Background: Cardiovascular diseases constitute one of the leading causes of morbidity and mortality worldwide. Herbal medicines represent viable alternatives to the synthetic drugs currently employed in the control of hypertension. This study aimed to isolate and identify the chemical markers of and to investigate the antihypertensive and anti-matrix metalloproteinase (MMP2) activities of an aqueous extract of the leaves.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
The application of biodegradable chelating agents in phytoremediation is a promising approach. This study aimed to investigate the effects and roles of underlying mechanisms of water-soluble carboxymethyl chitosan (WSCC) and rhamnolipids (RLs) on the remediation of Cd-contaminated soil by Hylotelephium spectabile. WSCC and RLs mediated the growth of H.
View Article and Find Full Text PDFPlant Sci
December 2024
Instituto de Fisiología Vegetal (INFIVE CCT CONICET La Plata), Universidad Nacional de La Plata (UNLP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Diagonal 113 Nº 495 (1900) La Plata, Argentina. Electronic address:
Nitrate reductase (NR) is an essential enzyme because of its role in nitrogen metabolism and in key signaling events through the generation of the reactive nitrogen species, nitric oxide (NO). In this work, we evaluated changes in endogenous NO levels during the onset of P-restriction in soybean plants (Glycine max), focusing on the possible pathways involved in its generation, namely NR and NO synthase like activity, NOS, and the subsequent role of NR during low P-acclimation. During the first 96h of P-starvation NO levels increased in the leaves.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Melatonin (MT) can improve plant resistance and fruit quality. The mechanism by which MT affects soluble sugar and organic acids accumulation in drupe fruits is not clear. In this study, 100 µmol/L MT was sprayed on the leaves of plum trees at the second stage of rapid fruit expansion (90 and 97 d after flowering), and the effects of MT on plum fruit quality and its effects on the soluble sugar-organic acid metabolism were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!