Fimbrial cells exposure to catalytic iron mimics carcinogenic changes.

Int J Gynecol Cancer

*Department of Obstetrics and Gynecology, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Milan; †Unit of Pathology, Department of Health Sciences, and ‡Physiology Laboratory, Department of Translational Medicine, University of Eastern Piedmont "Amedeo Avogadro," Novara, Italy.

Published: March 2015

Objective: Recent evidence strongly suggests that the fallopian tube is a site of origin of ovarian cancer. Although histological data show iron deposition in the fallopian tubes, its role remains unclear. To establish whether catalytic iron has a possible role in ovarian carcinogenesis, we isolated human fimbrial secretory epithelial cells (FSECs).

Methods: Fimbrial secretory epithelial cells, isolated from women undergoing isteroannessiectomy, were treated with different doses of catalytic iron (0.05-100 mM) to study cell viability; NO production; p53, Ras, ERK/MAPK, PI3K/Akt, Ki67, and c-Myc protein expressions through Western blot analysis; and immunocytochemistry or immunofluorescence.

Results: In FSECs treated with catalytic iron for up to 6 days, we observed an increase in cell viability, NO production, and p53, pan-Ras, ERK/MAPK, PI3K/Akt, Ki67, and c-Myc activations (P < 0.05) in a dose-dependent and time-dependent manner. These same results were also observed in FSECs maintained for respectively 2 and 4 weeks in the absence of catalytic iron after 6 days of stimulation.

Conclusions: Our model aimed at studying the main nongenetic risk factor for ovarian cancer, providing an alternative interpretation for the role of menstruation in increasing risk of this pathology. This in vitro model mimics several features of the precursor lesions and opens new scenarios for further investigations regarding the correlation between damages produced by repeated retrograde menstruation carcinogenic stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1097/IGC.0000000000000379DOI Listing

Publication Analysis

Top Keywords

catalytic iron
20
ovarian cancer
8
fimbrial secretory
8
secretory epithelial
8
epithelial cells
8
cell viability
8
viability production
8
production p53
8
erk/mapk pi3k/akt
8
pi3k/akt ki67
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!