Endometriosis: a new cellular and molecular genetic approach for understanding the pathogenesis and evolutivity.

Front Surg

Maternity and Surgical Department of Gynecology, HFR Hôpital Cantonal Fribourg , Fribourg , Switzerland.

Published: January 2015

Endometriosis is a benign disease with high prevalence in women of reproductive age estimated between 10 and 15% and is associated with considerable morbidity. Its etiology and pathogenesis are controversial but it is believed to involve multiple genetic, environmental, immunological, angiogenic, and endocrine processes. Altered expressions of growth factors, cytokines, adhesion molecules, matrix metalloproteinases, and enzymes for estrogen synthesis and metabolism have been frequently observed in this condition. The possibility of genetic basis of endometriosis is demonstrated in studies of familial disease, in which the incidence of endometriosis is higher for first-degree relatives of probands as compared to controls. This review describes mainly the cellular, cytochemical, cytogenetic, and molecular genetic features of endometriotic lesions and cultured endometriotic cells. In attempts to identify candidate gene (s) involved in the pathogenesis of endometriosis, a tissue-based approaches including conventional cytogenetics (RHG-banding), loss of heterozygosity (LOH), and comparative genomic hybridization (CGH) were employed. In addition to the karyotypic anomalies, consistent chromosome instability was confirmed by CGH and fluorescence in situ hybridization (FISH). The nature and significance of the molecular genetic aberrations in relation to the locations and function of oncogenes and tumor suppressor genes will be discussed. At last, a possible pathogenic role of embryonic duct remnants was observed in seven female fetal reproductive tract in endometriosis and may induce a discussion about the beginning of ovarian tumors and malignant proliferations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286973PMC
http://dx.doi.org/10.3389/fsurg.2014.00016DOI Listing

Publication Analysis

Top Keywords

molecular genetic
12
endometriosis
6
genetic
5
endometriosis cellular
4
cellular molecular
4
genetic approach
4
approach understanding
4
understanding pathogenesis
4
pathogenesis evolutivity
4
evolutivity endometriosis
4

Similar Publications

Leishmania mexicana N-Acetyltransferease 10 Is Important for Polysome Formation and Cell Cycle Progression.

Mol Microbiol

January 2025

Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.

Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.

View Article and Find Full Text PDF

The sarcoma ring trial: a case-based analysis of inter-center agreement across 21 German-speaking sarcoma centers.

J Cancer Res Clin Oncol

January 2025

Sarcoma Unit, Department of Surgery, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

Purpose: The management of soft tissue sarcoma (STS) at reference centers with specialized multidisciplinary tumor boards (MTB) improves patient survival. The German Cancer Society (DKG) certifies sarcoma centers in German-speaking countries, promoting high standards of care. This study investigated the variability in treatment recommendations for localized STS across different German-speaking tertiary sarcoma centers.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Genetic landscape in undiagnosed patients with syndromic hearing loss revealed by whole exome sequencing and phenotype similarity search.

Hum Genet

January 2025

Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.

There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.

View Article and Find Full Text PDF

Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!