Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers like xanthan gum and guar gum, enhanced apparent viscosity was found and in case of semi-synthetic polymers like sodium carboxymethyl cellulose and methyl cellulose, reduction in apparent viscosity was found. β-cyclodextrin was included at 0.5, 1 and 2% w/v concentrations into the polymeric solutions. These findings are useful in the adjustment of concentrations of viscosity modifiers during the formulation of physically stable disperse systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293687 | PMC |
J Phys Chem B
January 2025
School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi 030051, PR China.
Energetic composite systems with uniform particle distributions are of considerable interest, but sedimentation is a persisting challenge. Tungsten carbide (WC, density: 15.36 g/cm) particles are promising cemented carbide particles owing to their desirable properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, M.S., India.
Native banana starch (NS) has few limitations, such as poor solubility, low resistance to shear, temperature, and inconsistent retrogradation. This study investigates the effects of mono (α-amylase, pullulunase) and sequential enzymatic modifications of NS along with the application of ultrasound to enhance its functional attributes. Starch modified with α-amylase alone and along with ultrasound resulted the lowest amylose (20.
View Article and Find Full Text PDFFoods
January 2025
Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland.
Palm and palm kernel oils are preferred ingredients in industrial food processing for baked goods and chocolate-based desserts due to their unique properties, such as their distinctive melting behaviors. However, ongoing concerns about the social and environmental sustainability of palm oil production, coupled with consumer demands for palm oil-free products, have prompted the industry to seek alternatives which avoid the use of other tropical or hydrogenated fats. This project investigated replacing palm oils with chemically unhardened Swiss sunflower or rapeseed oils.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of commercially available natural, pregelatinised, acetylated, and phosphorylated maize starch and tapioca starch.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.
Multifunctional nanosurfaces receive growing attention due to their versatile properties. Capillary force lithography (CFL) has emerged as a simple and economical method for fabricating these surfaces. In recent works, the authors proposed to leverage the evolution strategies (ES) to modify nanosurface characteristics with CFL to achieve specific functionalities such as frictional, optical, and bactericidal properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!