Substrate tRNA recognition mechanism of eubacterial tRNA (m1A58) methyltransferase (TrmI).

J Biol Chem

From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan and

Published: February 2015

TrmI generates N(1)-methyladenosine at position 58 (m(1)A58) in tRNA. The Thermus thermophilus tRNA(Phe) transcript was methylated efficiently by T. thermophilus TrmI, whereas the yeast tRNA(Phe) transcript was poorly methylated. Fourteen chimeric tRNA transcripts derived from these two tRNAs revealed that TrmI recognized the combination of aminoacyl stem, variable region, and T-loop. This was confirmed by 10 deletion tRNA variants: TrmI methylated transcripts containing the aminoacyl stem, variable region, and T-arm. The requirement for the T-stem itself was confirmed by disrupting the T-stem. Disrupting the interaction between T- and D-arms accelerated the methylation, suggesting that this disruption is included in part of the reaction. Experiments with 17 point mutant transcripts elucidated the positive sequence determinants C56, purine 57, A58, and U60. Replacing A58 with inosine and 2-aminopurine completely abrogated methylation, demonstrating that the 6-amino group in A58 is recognized by TrmI. T. thermophilus tRNAGGU(Thr)GGU(Thr) contains C60 instead of U60. The tRNAGGU(Thr) transcript was poorly methylated by TrmI, and replacing C60 with U increased the methylation, consistent with the point mutation experiments. A gel shift assay revealed that tRNAGGU(Thr) had a low affinity for TrmI than tRNA(Phe). Furthermore, analysis of tRNAGGU(Thr) purified from the trmI gene disruptant strain revealed that the other modifications in tRNA accelerated the formation of m(1)A58 by TrmI. Moreover, nucleoside analysis of tRNAGGU(Thr) from the wild-type strain indicated that less than 50% of tRNAGG(Thr) contained m(1)A58. Thus, the results from the in vitro experiments were confirmed by the in vivo methylation patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342497PMC
http://dx.doi.org/10.1074/jbc.M114.606038DOI Listing

Publication Analysis

Top Keywords

transcript methylated
12
trmi
10
trnaphe transcript
8
aminoacyl stem
8
stem variable
8
variable region
8
analysis trnagguthr
8
trna
5
substrate trna
4
trna recognition
4

Similar Publications

Research on the function of epigenetic regulation in the inflammation of non-alcoholic fatty liver disease.

Life Med

August 2024

Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China.

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal.

View Article and Find Full Text PDF

The transcription factor TWIST1 is a major regulator of Epithelial-Mesenchymal Transition, enhancing cancer cell mobility and invasive potential. Overexpression of TWIST1 is associated with tumor progression and poor prognosis. In our study, we explored the role of TWIST1 as both a prognostic biomarker and a therapeutic target in bladder cancer (BC), as well as the relationship between its promoter methylation and mRNA expression in bladder cancer patients.

View Article and Find Full Text PDF

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!