Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis.

Circ Res

From the Department of Medicine (K.M.P., A.S., J.T., J.B., J.M., D.J.R.) and Department of Genetics (D.J.R.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (X.J., H.K.); and Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada (C.R.M.).

Published: February 2015

Rationale: Noncoding gene variants at the SORT1 locus are strongly associated with low-density lipoprotein cholesterol (LDL-C) levels, as well as with coronary artery disease. SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apolipoprotein B-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown.

Objective: To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis.

Methods And Results: We crossed Sort1(-/-) mice onto a humanized Apobec1(-/-); hAPOB transgenic background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. To test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1(-/-);LDLR(-/-) or Sort1(+/+);LDLR(-/-) bone marrow into Ldlr(-/-) mice and observed a similar reduction in atherosclerosis in mice lacking hematopoetic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoetic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or lipopolysaccharide-induced cytokine release in vivo. In contrast, sortilin-deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation.

Conclusions: Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4602371PMC
http://dx.doi.org/10.1161/CIRCRESAHA.116.305811DOI Listing

Publication Analysis

Top Keywords

foam cell
20
macrophage sortilin
16
cell formation
16
ldl-c levels
16
sortilin deficiency
16
ldl uptake
12
uptake foam
12
plasma ldl-c
12
sortilin
10
ldl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!