Purpose: Recent studies on ocular shape have raised increased interest in the peripheral characteristics of the eye, as it potentially triggers changes in the central vision. Current techniques are, however, not capable of accurately measuring the three-dimensional shape of the retina. We describe a new magnetic resonance imaging (MRI)-based method to obtain the retinal shape with high precision and use it to assess if differences in retinal shape could explain previously described trends in peripheral refraction.
Methods: Twenty-one healthy subjects were examined using high-field ocular MRI. The resulting data were automatically segmented and processed to calculate the retinal topographic map. We validated the method against partial coherence interferometry and assessed the reproducibility for four subjects.
Results: The retinal topographic maps describe the retinal shape with subpixel reproducibility (SD between sessions = 0.11 mm). Comparison with partial coherence interferometry showed a mean difference of 0.08 mm, 95% confidence interval -0.39 to 0.55 mm, with a standard deviation of 0.23 mm. The data give a possible geometric explanation for the previously described trend in myopic eyes toward relatively hyperopic refraction in the periphery, with full three-dimensional information. The retinal maps furthermore show small, submillimeter, irregularities that could have an important influence on the subjects' peripheral vision.
Conclusions: The possibility to quantitatively characterize the full three-dimensional retinal shape by MRI offers new ophthalmologic possibilities, such as quantitative geometric description of staphyloma. It could in addition be used as a validation technique, independent of standard optical methods, to measure the peripheral retinal shape.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.14-15161 | DOI Listing |
Glia
January 2025
Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.
View Article and Find Full Text PDFClin Ophthalmol
January 2025
University Eye Clinic Maastricht, Maastricht, the Netherlands.
Purpose: This study aims to explore the diagnostic utility of ultrasound B-scan while introducing the "Triangle" sign as a novel indicator. It also validates the sign's efficacy in distinguishing between choroidal detachment (CD) and suprachoroidal hemorrhage (SCH) from retinal detachment (RD) and vitreous hemorrhage (VH).
Patients And Methods: Retrospective analysis of consecutive cases of total CD and SCH undergoing B-scan at a single tertiary imaging center.
Ophthalmic Physiol Opt
January 2025
Robert O Curle Ophthalmology Suite, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
Purpose: To determine whether imaging features derived from fundus photographs contain 3D eye shape information beyond that available from spherical equivalent refraction (SER).
Methods: We analysed 99 eyes of 68 normal adults in the UK Biobank. An ellipsoid was fitted to the entire volume of each posterior eye (vitreous chamber without the lens)-segmented from magnetic resonance imaging of the brain.
Ophthalmic Physiol Opt
January 2025
Northeastern University College of Science, Boston, Massachusetts, USA.
Purpose: To assess longitudinal changes in optical quality across the periphery (horizontal meridian, 60°) in young children who are at high (HR) or low risk (LR) of developing myopia, as well as a small subgroup of children who developed myopia over a 3-year time frame.
Methods: Aberrations were measured every 6 months in 92 children with functional emmetropia at baseline. Children were classified into HR or LR based on baseline refractive error and parental myopia.
Cancers (Basel)
January 2025
Department of Ophthalmology, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany.
: Accurate target definition, treatment planning and delivery increases local tumor control for radiotherapy by minimizing collateral damage. To achieve this goal for uveal melanoma (UM), tantalum fiducial markers (TFMs) were previously introduced in proton and photon beam radiotherapy. However, TFMs cause pronounced scattering effects in imaging that make the delineation of small tumors difficult.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!