A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

17β-estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner. | LitMetric

In bone, different concentration of estrogen leads to various of physiological processes in osteoblast, such as the proliferation, migration, and apoptosis in an estrogen receptor-dependent manner. But little was known about the estrogen effects on osteosarcoma (OS). In this study, OS cell MG-63 was treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) with the presence or absence of estrogen receptor α (ERα), for evaluating the E2 effects on proliferation, migration, invasion, colony formation and apoptosis. Consistent with a previous study, high dose of E2 treatment dramatically downregulated expressing level of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1). The observation of upregulation of miR-9 after a high dose of E2 treatment indicated the cause of MALAT-1 reduction. Downregulation of MALAT-1 promoted the combination of SFPQ/PTBP2 complex. It was also observed that the proliferation, migration, invasion, colony formation and apoptosis of OS cells were remarkably affected by high dose of E2 treatment, but not by low dose, in an ERα independent manner. Furthermore, the abolishment of the effects on these physiological processes caused by ectopic expression of miR-9 ASOs suggested the necessity of miR-9 in MALAT-1 regulation. Here we found that the high dose of E2 treatment upregulated miR-9 thus posttranscriptionally regulated MALAT-1 RNA level in OS cells, and then the downregulation of MALAT-1 inhibited cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) processes in the E2-dose dependent and ER-independent ways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.12.114DOI Listing

Publication Analysis

Top Keywords

migration invasion
16
proliferation migration
16
high dose
16
dose treatment
16
colony formation
12
cell proliferation
8
cell mg-63
8
physiological processes
8
invasion colony
8
formation apoptosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!