Introduction: Cathepsin K (catK) expression is increased in cartilage, bone and synovium during osteoarthritis (OA). To study the role of catK expression and elevated cathepsin activity in the synovium on cartilage destruction in established OA, we overexpressed cystatin C (cysC), a natural cysteine protease inhibitor, in the synovium of rabbit OA joints.

Methods: The ability of cysC to inhibit activity of cathepsins in rabbit OA synovium lysates was tested in vitro using protease activity assay. In vivo, the tissue localization of recombinant adeno-associated virus (rAAV) with LacZ gene after intra-articular injection was determined by β-galactosidase staining of rabbit joints 4 weeks later. To inhibit cathepsin activity in the synovium, a rAAV2-encoding cysC was delivered intra-articularly into rabbit joints 4 weeks after OA was induced by anterior cruciate ligament transection (ACLT). Seven weeks postinjection, endogenous catK and cysC levels as well as the vector-derived cysC expression in the synovium of normal and OA joints were examined by RNA quantification. Synovial cathepsin activity and catK, catB and catL protein levels were determined by activity and Western blot analyses, respectively. Synovitis and cartilage degradation were evaluated by histopathological scoring.

Results: In vitro, the ability of cysC to efficiently inhibit activity of purified catK and OA-induced cathepsins in rabbit synovial lysates was demonstrated. In vivo, the intra-articular delivery of rAAV2/LacZ showed transduction of mostly synovium. Induction of OA in rabbit joints resulted in fourfold increase in catK mRNA compared to sham controls while no change was detected in endogenous cysC mRNA levels in the synovium. Protein levels for catK, catB and catL were also increased in the synovium with a concomitant fourfold increase in cathepsin activity. Joints treated with rAAV2/cysC showed both detection of vector genomes and vector-derived cysC transcripts in the synovium. Production of functional cysC by the vector was demonstrated by complete block of cathepsin activity in the synovium. However, this did not decrease synovitis, bone sclerosis or progression of cartilage degradation.

Conclusions: Increased production of natural cathepsin inhibitor, cysC, in OA synovium does not alleviate synovitis or cartilage pathology during a preexisting OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350912PMC
http://dx.doi.org/10.1186/s13075-015-0519-3DOI Listing

Publication Analysis

Top Keywords

cathepsin activity
20
synovium
13
synovitis cartilage
12
activity synovium
12
rabbit joints
12
cysc
10
activity
9
cartilage degradation
8
catk expression
8
ability cysc
8

Similar Publications

Unlabelled: The neurodegenerative disorder Frontotemporal Dementia (FTD) can be caused by a repeat expansion (GGGGCC; G4C2) in C9orf72. The function of wild-type C9orf72 and the mechanism by which the C9orf72-G4C2 mutation causes FTD, however, remain unresolved. Diverse disease models including human brain samples and differentiated neurons from patient-derived induced pluripotent stem cells (iPSCs) identified some hallmarks associated with FTD, but these models have limitations, including biopsies capturing only a static snapshot of dynamic processes and differentiated neurons being labor-intensive, costly, and post-mitotic.

View Article and Find Full Text PDF

Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury.

Immunopharmacol Immunotoxicol

January 2025

Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI.

View Article and Find Full Text PDF

Aging Oocytes: Exploring Apoptosis and Its Impact on Embryonic Development in Common Carp (Cyprinus carpio).

J Anim Sci

January 2025

Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodňany 389 01, Czech Republic.

Ovulation, fertilization, and embryo development are orchestrated and synchronized processes essential for the optimal health of offspring. Post-ovulatory aging disrupts this synchronization and impairs oocyte quality. In addition, oocyte aging causes fertilization loss and poor embryo development.

View Article and Find Full Text PDF

This study aimed to investigate the regulation and underlying mechanism of Cathepsin K (CTSK) in bone-invasive pituitary adenomas (BIPAs). A total of 1437 patients with pituitary adenomas were included and followed up. RNA sequencing, immunohistochemistry, and qRT-PCR were used to analyze CTSK expression.

View Article and Find Full Text PDF

Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!