Physical chemistry: Hydrophobic interactions in context.

Nature

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

Published: January 2015

Download full-text PDF

Source
http://dx.doi.org/10.1038/517277aDOI Listing

Publication Analysis

Top Keywords

physical chemistry
4
chemistry hydrophobic
4
hydrophobic interactions
4
interactions context
4
physical
1
hydrophobic
1
interactions
1
context
1

Similar Publications

Article Synopsis
  • Glucose sensing is essential for managing diabetes, and this study explores NbCT-selenium nanoparticles for effective nonenzymatic glucose detection.
  • The composite material was characterized using techniques like scanning and transmission electron microscopy, and it was tested on a gold disc electrode in an alkaline solution.
  • The sensor operates at a low overpotential of 0.16 V, demonstrating a detection range of 2 to 30 mM, with a notable sensitivity of 4.15 µA mM cm and a detection limit of 1.1 mM.
View Article and Find Full Text PDF

The effects of heat-assisted vat photopolymerization (HVPP) on the physical and mechanical properties of 3D-printed dental resins, including the morphometric stability of 3D-printed crowns, were investigated. A resin tank was designed to maintain the resin at 30, 40, and 50 ℃ during the 3D printing process. Test specimens were fabricated using a commercial dental resin, with untreated resin serving as the control group.

View Article and Find Full Text PDF

Single-molecule localization microscopy (SMLM) allows imaging beyond the diffraction limit. Detection of molecules is a crucial initial step in SMLM. False positive detections, which are not quantitatively controlled in current methods, are a source of artifacts that affect the entire SMLM analysis pipeline.

View Article and Find Full Text PDF

The VCo-LDH/CS hydrogel beads were created by combining VCo-layered double hydroxide (VCo-LDH) and chitosan (CS) using a cross-linking process with epichlorohydrin. These beads were specifically designed to remove tetracycline (TTC). To characterize the VCo-LDH/CS hydrogel beads, several analytical techniques were used, with PXRD, XPS, FESEM, EDX, and FT-IR.

View Article and Find Full Text PDF

Dually Fluorinated Unimolecular Micelles for Stable Oxygen-Carrying and Enhanced Photosensitive Efficiency to Boost Photodynamic Therapy against Hypoxic Tumors.

Acta Biomater

January 2025

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China. Electronic address:

Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!