Rapid in vivo validation of candidate drivers derived from the PTEN-mutant prostate metastasis genome.

Methods

Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. Electronic address:

Published: May 2015

Human genome analyses have revealed that increasing gene copy number alteration is a driving force of incurable cancer of the prostate (CaP). Since most of the affected genes are hidden within large amplifications or deletions, there is a need for fast and faithful validation of drivers. However, classic genetic CaP engineering in mouse makes this a daunting task because generation, breeding based combination of alterations and non-invasive monitoring of disease are too time consuming and costly. To address the unmet need, we recently developed RapidCaP mice, which endogenously recreate human PTEN-mutant metastatic CaP based on Cre/Luciferase expressing viral infection, that is guided to Pten(loxP)/Trp53(loxP) prostate. Here we use a sensitized, non-metastatic Pten/Trp53-mutant RapidCaP system for functional validation of human metastasis drivers in a much accelerated time frame of only 3-4months. We used in vivo RNAi to target three candidate tumor suppressor genes FOXP1, RYBP and SHQ1, which reside in a frequent deletion on chromosome 3p and show that Shq1 cooperates with Pten and p53 to suppress metastasis. Our results thus demonstrate that the RapidCaP system forms a much needed platform for in vivo screening and validation of genes that drive endogenous lethal CaP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429512PMC
http://dx.doi.org/10.1016/j.ymeth.2014.12.022DOI Listing

Publication Analysis

Top Keywords

rapidcap system
8
rapid vivo
4
validation
4
vivo validation
4
validation candidate
4
candidate drivers
4
drivers derived
4
derived pten-mutant
4
pten-mutant prostate
4
prostate metastasis
4

Similar Publications

Unlabelled: We have recently recapitulated metastasis of human PTEN/TP53-mutant prostate cancer in the mouse using the RapidCaP system. Surprisingly, we found that this metastasis is driven by MYC, and not AKT, activation. Here, we show that cell-cell communication by IL6 drives the AKT-MYC switch through activation of the AKT-suppressing phosphatase PHLPP2, when PTEN and p53 are lost together, but not separately.

View Article and Find Full Text PDF

Rapid in vivo validation of candidate drivers derived from the PTEN-mutant prostate metastasis genome.

Methods

May 2015

Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. Electronic address:

Human genome analyses have revealed that increasing gene copy number alteration is a driving force of incurable cancer of the prostate (CaP). Since most of the affected genes are hidden within large amplifications or deletions, there is a need for fast and faithful validation of drivers. However, classic genetic CaP engineering in mouse makes this a daunting task because generation, breeding based combination of alterations and non-invasive monitoring of disease are too time consuming and costly.

View Article and Find Full Text PDF

RapidCaP, a novel GEM model for metastatic prostate cancer analysis and therapy, reveals myc as a driver of Pten-mutant metastasis.

Cancer Discov

March 2014

1Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor; 2Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College; 3Mount Sinai School of Medicine, New York, New York; 4Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; and 5Unit for Laboratory Animal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan.

Genetically engineered mouse (GEM) models are a pillar of functional cancer research. Here, we developed RapidCaP, a GEM modeling system that uses surgical injection for viral gene delivery to the prostate. We show that in Pten deficiency, loss of p53 suffices to trigger metastasis to distant sites at greater than 50% penetrance by four months, consistent with results from human prostate cancer genome analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!