Background: Mood disorders are frequently characterized by uncertain prognosis and studying mRNA expression variations in blood cells represents a promising avenue of identifying biomarkers for mood disorders. State-dependent gene expression variations have been described during a major depressive episode (MDE), in particular for SLC6A4 mRNA, but how this transcript varies in relation to MDE evolution remains unclear. In this study, we prospectively assessed time trends of SCL6A4 mRNA expression in responder and nonresponder patients.

Methods: We examined SLC6A4 mRNA expression in blood samples from 13 patients treated for severe MDE and their matched controls by reverse transcription and quantitative PCR. All subjects were followed for 30 weeks. Patients were classified as either responders or nonresponders based on improvement of depression according to the 17-item Hamilton Depression Rating Scale. Using a longitudinal design, we ascertained mRNA expression at baseline, 2, 8, and 30 weeks and compared mRNA expression between responder and nonresponder patients, and matched controls.

Results: We observed a decrease of SLC6A4 mRNA expression in responder patients across a 30-week follow-up, while nonresponder patients exhibited up-regulated SLC6A4 mRNA.

Conclusion: Peripheral SLC6A4 mRNA expression could serve as a biomarker for monitoring and follow-up during an MDE and may help to more appropriately select individualized treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000368120DOI Listing

Publication Analysis

Top Keywords

mrna expression
28
slc6a4 mrna
16
expression responder
12
expression
9
gene expression
8
major depressive
8
depressive episode
8
mood disorders
8
mrna
8
expression variations
8

Similar Publications

The global prevalence of heart failure is still growing, which imposes a heavy economic burden. The role of microRNA-146b (miR-146b) in HF remain largely unknown. This study aims to explore the role and mechanism of miR-146b in HF.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.

View Article and Find Full Text PDF

Objective: To study the subcutaneous adipose tissue (SAT) transcriptome in people with HIV (PWH) switching efavirenz (EFV) or a protease inhibitor (PI) to raltegravir and to compare the transcriptome of PWH to those of people without HIV (PWoH).

Design: PWH (n = 36) on EFV (n = 22) or a PI (n = 14) based ART regimen were randomized to switch to RAL (n = 15) or to continue unchanged medication (n = 17). PWoH (n = 10), comparable in age and body mass index, were included for comparison.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC), the most common form of liver cancer, has a significant mortality rate, largely due to late diagnosis. Recent advances in medical research have demonstrated the potential of biomarkers for early detection. Moreover, the discovery and use of prognostic biomarkers offer a ray of hope in the fight against liver cancer.

View Article and Find Full Text PDF

Among the known nuclear exportins, CRM1 is the most studied prototype. Dysregulation of CRM1 occurs in many cancers, hence, understanding the role of CRM1 in cancer can help in developing synergistic therapeutics. The study investigates how CRM1 affects prostate cancer growth and survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!