The proton NMR spectra of n-pentane orientationally ordered in two nematic liquid-crystal solvents are studied over a wide temperature range and analysed using covariance matrix adaptation evolutionary strategy. Since alkanes possess small electrostatic moments, their anisotropic intermolecular interactions are dominated by short-range size-and-shape effects. As we assumed for n-butane, the anisotropic energy parameters of each n-pentane conformer are taken to be proportional to those of ethane and propane, independent of temperature. The observed temperature dependence of the n-pentane dipolar couplings allows a model-free separation between conformer degrees of order and conformer probabilities, which cannot be achieved at a single temperature. In this way for n-pentane 13 anisotropic energy parameters (two for trans trans, tt, five for trans gauche, tg, and three for each of gauche+ gauche+, pp, and gauche+ gauche-, pm), the isotropic trans-gauche energy difference Etg and its temperature coefficient Etg(') are obtained. The value obtained for the extra energy associated with the proximity of the two methyl groups in the gauche+ gauche- conformers (the pentane effect) is sensitive to minute details of other assumptions and is thus fixed in the calculations. Conformer populations are affected by the environment. In particular, anisotropic interactions increase the trans probability in the ordered phase.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4904822DOI Listing

Publication Analysis

Top Keywords

anisotropic energy
8
energy parameters
8
trans trans
8
gauche+ gauche+
8
gauche+ gauche-
8
n-pentane
5
temperature
5
model-free temperature-dependent
4
temperature-dependent conformational
4
conformational study
4

Similar Publications

Accurate characterisation of seismic source mechanisms in mining environments is crucial for effective hazard mitigation, but it is complicated by the presence of anisotropic geological conditions. Neglecting anisotropic effects during moment tensor (MT) inversion introduces significant distortions in the retrieved source characteristics. In this study, we investigated the impact of ignoring anisotropy during MT inversion on the reliability of hazard assessment.

View Article and Find Full Text PDF

Thermal Enhanced Near-Infrared Upconversion Luminescence in YMoO:Yb/Nd with Uniaxial Negative Thermal Expansion.

Inorg Chem

December 2024

School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, P. R. China.

Thermal quenching (TQ) of luminescence presents a significant barrier to the effective use of optical thermometers in high-temperature applications. Herein, we report a novel uniaxial negative thermal expansion (NTE) phosphor, YMoO:Yb,Nd, synthesized by a solid-state reaction. Under 980 nm laser excitation, it exhibits excellent thermally enhanced near-infrared (NIR) upconversion luminescence (UCL) performance.

View Article and Find Full Text PDF

We investigate the comprehensive analysis's structural, electronic, optical, and elastic properties of Cs₂NaScX₆ (X = Cl, Br) double perovskites using density functional theory (DFT) implemented by the WIEN2k code. The results show that both compounds are in cubic phases. The calculated tolerance factors show both are stable compounds.

View Article and Find Full Text PDF

The synthesis of polymer/oligomer-stabilized metal nanostructures (MNS) opens up a wide range of possibilities, from fundamental materials science to practical applications in domains such as medicine, catalysis, sensing, and energy. Because of the versatility of this synthetic approach, it is a dynamic and ever-changing field of study. These polymers/oligomers have precise control over the nucleation and growth kinetics, allowing the production of mono-disperse MNS with well-defined properties.

View Article and Find Full Text PDF

Photomechanical crystals act as light-driven material-machines that can convert the energy carried by photons into kinetic energy via shape deformation or displacement, and this capability holds a paramount significance for the development of photoactuated devices. This transformation is usually attributed to anisotropic expansion or contraction of the unit cell engendered by light-induced structural modifications that lead to accumulation and release of stress that generates a momentum, resulting in readily observable mechanical effects. Among the available photochemical processes, the photoinduced [2+2] and [4+4] are known for their robustness, predictability, amenability for control with molecular and supramolecular engineering approaches, and efficiency that has already been elevated to a proof-of-concept smart devices based on organic crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!