Background: Staphylococcus aureus is one of the most common bacteria associated with chronic rhinosinusitis (CRS). Although S. aureus biofilms have been correlated with disease severity in CRS, little is known about the initial immune response that biofilms induce in the sinonasal mucosa.
Objective: The aim of this study was to evaluate the innate immune response (in terms of cytokines) of nondiseased human sinonasal tissue to S. aureus biofilms.
Methods: Full-thickness sinonasal explant cultures (n = 7 donors) were challenged with established S. aureus biofilms for 24 hours. The expression profiles of 17 cytokines were measured using multiplex analysis, real-time quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Differences in expression were evaluated using Student's t-test.
Results: Interleukin (IL)-1β, IL-10, TNF, IL-17A, and interferon (IFN)-γ were up-regulated at the RNA and protein levels in biofilm-treated tissues compared with controls. Elevation of caspase-3 in biofilm-treated samples indicates S. aureus biofilms induce apoptosis on the sinonasal mucosa.
Conclusion: S. aureus biofilms induced apoptosis and a predominant proinflammatory immune response on normal sinonasal mucosal explants. This immune response appeared to be triggered by intrinsic bacterial elements but also by components of the biofilm matrix. Live biofilms were present on the mucosa at the end of the challenge, suggesting an inability of the induced immune response to eliminate the S. aureus biofilms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2500/ajra.2015.29.4130 | DOI Listing |
Heliyon
January 2025
Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
Background: Oritavancin (ORT) is a new single-dose lipoglycopeptide showing activity against staphylococci and vancomycin-resistant enterococci. However, there is no data regarding its potential use as a catheter lock solution are scarce. We constructed an model to analyze the efficacy and stability of an ORT lock solution against the biofilm of staphylococci and enterococci over 7 days at 37 °C.
View Article and Find Full Text PDFBiofilm
June 2025
Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.
Bacterial biofilms formed by and pose significant challenges in treating cystic fibrosis (CF) airway infections due to their resistance to antibiotics. New therapeutic approaches are urgently needed to treat these chronic infections. This study aimed to investigate the antibiofilm potential of various plant extracts, specifically targeting mucoid and small colony variants of and and strains.
View Article and Find Full Text PDFTrop Biomed
December 2024
Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria.
The increasing prevalence of multidrug-resistant bacteria necessitates the exploration of novel antimicrobial agents. This study aims to investigate the antibacterial and antibiofilm properties of mucus from Helix aspersa, a species of terrestrial snail, against multidrug resistant Staphylococcus aureus strains. The antibacterial effect was assessed using well diffusion, microdilution, and time kill assays.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
Staphylococcaceae are a diverse bacterial family with important implications for human and animal health. This study highlights the One Health relevance of their environmental dispersal, particularly, by identifying closely related or genetically identical strains circulating between farm and community environments. Environmental Staphylococcaceae strains were isolated from animal farms and interconnected areas within a university setting, both influenced by anthropogenic activities.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.
Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!