The kinase/endonuclease inositol requiring enzyme 1 (IRE1α), one of the sensors of unfolded protein accumulation in the endoplasmic reticulum that triggers the unfolded protein response (UPR), has been investigated as an anticancer target. We identified potent allosteric inhibitors of IRE1α endonuclease activity that bound to the kinase site on the enzyme. Structure-activity relationship (SAR) studies led to 16 and 18, which were selective in kinase screens and were potent against recombinant IRE1α endonuclease as well as cellular IRE1α. The first X-ray crystal structure of a kinase inhibitor (16) bound to hIRE1α was obtained. Screening of native tumor cell lines (>300) against selective IRE1α inhibitors failed to demonstrate any effect on cellular viability. These results suggest that IRE1α activity is not essential for viability in most tumor cell lines, in vitro, and that interfering with the survival functions of the UPR may not be an effective strategy to block tumorigenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291719PMC
http://dx.doi.org/10.1021/ml500315bDOI Listing

Publication Analysis

Top Keywords

unfolded protein
12
tumor cell
12
protein response
8
selective kinase
8
ire1α endonuclease
8
cell lines
8
ire1α
7
response cancer
4
cancer ire1α
4
ire1α inhibition
4

Similar Publications

E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells.

Genes Dev

December 2024

Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;

The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.

View Article and Find Full Text PDF

We created a novel laboratory experience where undergraduate students explore the techniques used to study protein misfolding, unfolding, and aggregation. Despite the importance of protein misfolding and aggregation diseases, protein unfolding is not typically explored in undergraduate biochemistry laboratory classes. Yeast alcohol dehydrogenase (YADH) is used in the undergraduate biochemistry laboratory course at Miami University as the model system to explore protein overexpression and purification, bioinformatics, and enzyme characterization.

View Article and Find Full Text PDF

Background: Soy protein isolate (SPI) has poor emulsifying ability because of its low molecular flexibility and compact structure, limiting its application in extruded protein-based foods. Extrusion technology has emerged as a promising way to alter the structural properties of proteins. Therefore, the impacts of grape seed proanthocyanidin (GSP) on structural and emulsifying characteristics of SPI in extrusion field were explored in this study.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Currently, PD is incurable, and the diagnosis of PD mainly relies on clinical manifestations. The central pathological event in PD is the abnormal aggregation and deposition of misfolded α-synuclein (α-Syn) protein aggregates in the Lewy body (LB) in affected brain areas.

View Article and Find Full Text PDF

Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits.

Int J Mol Sci

January 2025

Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.

This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!