CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury.

J Neurosci

Brain and Spinal Injury Center, Departments of Physical Therapy and Rehabilitation Science, and Neurological Surgery, University of California, San Francisco, California 94110

Published: January 2015

AI Article Synopsis

  • Traumatic brain injury (TBI) increases the risk of neurodegenerative diseases, highlighting the need for new therapies to reduce secondary damage caused by neuroinflammation.
  • Researchers investigated the role of CCR2(+) macrophages in neuroinflammation and cognitive dysfunction following TBI, using a specialized mouse model.
  • They found that by targeting CCR2(+) macrophages with a selective antagonist, CCX872, they could significantly reduce inflammation and improve cognitive outcomes, suggesting this approach could be a promising treatment for TBI.

Article Abstract

Traumatic brain injury (TBI) is a major risk factor for the development of multiple neurodegenerative diseases. With respect to the increasing prevalence of TBI, new therapeutic strategies are urgently needed that will prevent secondary damage to primarily unaffected tissue. Consistently, neuroinflammation has been implicated as a key mediator of secondary damage following the initial mechanical insult. Following injury, there is uncertainty regarding the role that accumulating CCR2(+) macrophages play in the injury-induced neuroinflammatory sequelae and cognitive dysfunction. Using CX3CR1(GFP/+)CCR2(RFP/+) reporter mice, we show that TBI initiated a temporally restricted accumulation of peripherally derived CCR2(+) macrophages, which were concentrated in the hippocampal formation, a region necessary for learning and memory. Multivariate analysis delineated CCR2(+) macrophages' neuroinflammatory response while identifying a novel therapeutic treatment window. As a proof of concept, targeting CCR2(+) macrophages with CCX872, a novel Phase I CCR2 selective antagonist, significantly reduced TBI-induced inflammatory macrophage accumulation. Concomitantly, there was a significant reduction in multiple proinflammatory and neurotoxic mediators with this treatment paradigm. Importantly, CCR2 antagonism resulted in a sparing of TBI-induced hippocampal-dependent cognitive dysfunction and reduced proinflammatory activation profile 1 month after injury. Thus, therapeutically targeting the CCR2(+) subset of monocytes/macrophages may provide a new avenue of clinical intervention following TBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293420PMC
http://dx.doi.org/10.1523/JNEUROSCI.2405-14.2015DOI Listing

Publication Analysis

Top Keywords

cognitive dysfunction
12
ccr2+ macrophages
12
ccr2 antagonism
8
traumatic brain
8
brain injury
8
secondary damage
8
targeting ccr2+
8
ccr2+
5
antagonism alters
4
alters brain
4

Similar Publications

Correlates of Impaired Timing Abilities in Schizophrenia: A Systematic Review.

J Nerv Ment Dis

December 2024

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.

This review aimed at summarizing the literature evidence on clinical, cognitive, and neurobiological correlates of impaired timing abilities in schizophrenia (SCZ). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic literature search was conducted in PubMed, EMBASE, and PsycInfo by looking at correlates between timing abilities and either symptom severity, cognition, and neurobiological data (imaging and electroencephalography) in individuals with SCZ, without restrictions on study design. A total of 45 articles were selected: associations were identified between impaired timing performance and positive, negative, and disorganization symptoms, as well as with executive functioning, working memory, and attention.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is an important risk factor for brain cognitive impairment, but the specific mechanism is still unclear. The imbalance of gut microbiota under pathological conditions (such as an increase in pathogenic bacteria) may be involved in the occurrence of various diseases. The purpose of this study is to investigate the effect of increased abundance of gut Citrobacter rodentium on cognitive function in T2D mice.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.

View Article and Find Full Text PDF

Introduction: Vortioxetine is a multimodal antidepressant with a high tolerability profile. Recent evidence suggests a role for vortioxetine in improving cognitive function and reducing functional disability linked to depression. We conducted a systematic review on the use of vortioxetine in different neurological disorders.

View Article and Find Full Text PDF

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!