A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Relationships among dissemination of primary parainfluenza virus infection in the respiratory tract, mucosal and peripheral immune responses, and protection from reinfection: a noninvasive bioluminescence-imaging study. | LitMetric

Relationships among dissemination of primary parainfluenza virus infection in the respiratory tract, mucosal and peripheral immune responses, and protection from reinfection: a noninvasive bioluminescence-imaging study.

J Virol

Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA Department of Microbiology, Immunology Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA

Published: April 2015

AI Article Synopsis

  • Respiratory paramyxoviruses like RSV and HPIVs commonly infect children, providing incomplete protection against future infections.
  • Using luciferase-reporter Sendai viruses, researchers evaluated infection and immune responses in mice, finding that high-dose intranasal inoculation offered the best antibody responses and protection.
  • The study highlights the effectiveness of different inoculation methods and emphasizes the need for vaccine development against these significant respiratory pathogens.

Article Abstract

Unlabelled: Respiratory paramyxoviruses such as respiratory syncytial virus (RSV) and human parainfluenza virus type 1 (HPIV1) to HPIV4 infect virtually all children by the age of 2 to 5 years, leading to partial but incomplete protection from reinfection. Here, we used luciferase-expressing reporter Sendai viruses (the murine counterpart of HPIV1) to noninvasively measure primary infection, immune responses, and protection from reinfection by either a lethal challenge or natural transmission in living mice. Both nonattenuated and attenuated reporter Sendai viruses were used, and three inoculation strategies were employed: intramuscular (i.m.), intranasal (i.n.) at a low dose and low volume, and i.n. at a high dose and high volume. High-dose, high-volume i.n. inoculation resulted in the highest levels of antibody responses and protection from reinfection. Low-dose, low-volume i.n. inoculation afforded complete protection from contact transmission and protection from morbidity, mortality, and viral growth during lethal challenge. i.m. inoculation was inferior to i.n. inoculation at inducing antibody responses and protection from challenge. For individual mice and across groups, the levels of serum binding and neutralizing antibody responses correlated with primary infection and protection from reinfection in the lungs. Contact transmission, the predominant mode of parainfluenza virus transmission, was modeled accurately by direct i.n. inoculation of Sendai virus at a low dose and low volume and was completely preventable by i.n. vaccination of an attenuated virus at a low dose and low volume. The data highlight differences in infection and protection from challenge in the upper versus lower respiratory tract and bear upon live attenuated vaccine development.

Importance: There are currently no licensed vaccines against HPIVs and human RSV (HRSV), important respiratory pathogens of infants and children. Natural infection leads to partial but incomplete protective immunity, resulting in subsequent reinfections even in the absence of antigenic drift. Here, we used noninvasive bioluminescence imaging in a mouse model to dissect relationships among (i) the mode of inoculation, (ii) the dynamics of primary infection, (iii) consequent immune responses, and (iv) protection from high-dose, high-volume lethal challenge and contact transmission, which we find here to be similar to that of a mild low-dose, low-volume upper respiratory tract (URT)-biased infection. Our studies demonstrate the superiority of i.n. versus i.m. vaccination in protection against both lethal challenge and contact transmission. In addition to providing correlates of protection that will assist respiratory virus vaccine development, these studies extend the development of an increasingly used technique for the study of viral infection and immunity, noninvasive bioluminescence imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403409PMC
http://dx.doi.org/10.1128/JVI.03581-14DOI Listing

Publication Analysis

Top Keywords

responses protection
20
protection reinfection
20
lethal challenge
16
contact transmission
16
parainfluenza virus
12
respiratory tract
12
immune responses
12
protection
12
primary infection
12
low dose
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!