A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. | LitMetric

This paper presents a continuous-flow microfluidic device for sorting stem cells and their differentiation progenies. The principle of the device is based on the accumulation of multiple dielectrophoresis (DEP) forces to deflect cells laterally in conjunction with the alternating on/off electric field to manipulate the cell trajectories. The microfluidic device containing a large array of oblique interdigitated electrodes was fabricated using a combination of standard and soft lithography techniques to generate a PDMS-gold electrode construct. Experimental testing with human mesenchymal stem cells (hMSC) and their differentiation progenies (osteoblasts) was carried out at different flow rates, and clear separation of the two populations was achieved. Most of the osteoblasts experiencing stronger DEP forces were deflected laterally and continuously, following zig-zag trajectories, and moved towards the desired collection outlet, whereas most of the hMSCs remained on the original trajectory due to weaker DEP forces. The experimental measurements were characterized and evaluated quantitatively, and consistent performance was demonstrated. Collection efficiency up to 92% and 67% for hMSCs and osteoblasts, respectively, along with purity up to 84% and 87% was obtained. The experimental results established the feasibility of our microfluidic DEP sorting device for continuous, label-free sorting of stem cells and their differentiation progenies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385543PMC
http://dx.doi.org/10.1039/c4lc01253dDOI Listing

Publication Analysis

Top Keywords

stem cells
16
sorting stem
12
cells differentiation
12
differentiation progenies
12
dep forces
12
microfluidic device
8
cells
5
continuous-flow sorting
4
stem
4
differentiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!