Cadmium (Cd)-intoxicated experimental animals exhibit impaired renal secretion of organic anions (OA) and cations (OC), indicating their transporters (Oats and Octs) in the proximal tubule (PT) basolateral membrane as possible targets of Cd. To correlate transport data from the literature with the expression of relevant transporters, we performed immunochemical and RT-PCR studies of renal Oats and Octs in the subchronic (treatment with CdCl2; 2 mg Cd/kg b.m./day, for 2 weeks) and acute (treatment with Cd-metallothionein (CdMT); 0.4 mg Cd/kg b.m., 6 or 12 h before killing) models of Cd nephrotoxicity. In the subchronic model, PT exhibited a minor loss of basolateral invaginations and overall unchanged expression of Na(+)/K(+)-ATPase and GAPDH proteins and mRNAs, while the expression of Oat and Oct proteins and their mRNAs was strongly downregulated. In the acute model, a time-related redistribution of basolateral transporters to the intracellular vesicular compartment was a major finding. However, 6 h following CdMT treatment, the total abundance of Oat and Oct proteins in the renal tissue remained unchanged, the expression of mRNAs decreased only for Oats, while a limited Oat1 and Na(+)/K(+)-ATPase immunoreactivity in the PT apical membrane indicated loss of cell polarity. As tested in rats treated with colchicine, the observed loss/redistribution of basolateral transporters in both models may be independent on microtubules. Therefore, the diminished renal secretion of OA and OC via PT in Cd nephrotoxicity may result from (a) limited loss of secretory surface (basolateral invaginations), (b) selective loss of Oats and Octs, and

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-015-1450-8DOI Listing

Publication Analysis

Top Keywords

oats octs
12
renal secretion
8
basolateral invaginations
8
unchanged expression
8
proteins mrnas
8
oat oct
8
oct proteins
8
basolateral transporters
8
expression
5
transporters
5

Similar Publications

The identification of substrates for solute carriers (SLCs) handling drugs is an important challenge, owing to the major implication of these plasma membrane transporters in pharmacokinetics and drug-drug interactions. In this context, the competitive counterflow (CCF) assay has been proposed as a practical and less expensive approach than the reference functional uptake assays for discriminating SLC substrates and non-substrates. The present article was designed to summarize and discuss key-findings about the CCF assay, including its principle, applications, challenges and limits, and perspectives.

View Article and Find Full Text PDF

This study aimed to investigate the absorption of alkaloids from Phellodendri chinensis Cortex (PC) by human renal tubular epithelial cells (HK-2). Cellular uptake and affinity ultrafiltration assays were employed to determine the alkaloid uptake pathway in HK-2 cells. Stemming from the hypothesis that salt-water processed PC introduces these alkaloids into the kidney at a cellular level, this research focused on different processed products of PC that are tailored for renal targeting.

View Article and Find Full Text PDF

Gout represents a metabolic ailment resulting from the accumulation of monosodium urate crystals within joints, causing both inflammation and, harm to tissues. The primary contributor to gout's emergence is an elevated presence of serum urate, which is under the regulation of kidney and, gut urate transporters. Mitigating this risk factor is crucial for averting gout's onset.

View Article and Find Full Text PDF

Uptake Transporters at the Blood-Brain Barrier and Their Role in Brain Drug Disposition.

Pharmaceutics

October 2023

Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA.

Uptake drug transporters play a significant role in the pharmacokinetic of drugs within the brain, facilitating their entry into the central nervous system (CNS). Understanding brain drug disposition is always challenging, especially with respect to preclinical to clinical translation. These transporters are members of the solute carrier (SLC) superfamily, which includes organic anion transporter polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), and amino acid transporters.

View Article and Find Full Text PDF

Drug nephrotoxicity is a common healthcare problem in hospitalized patients and a major limitation during drug development. Multi-segmented kidney organoids derived from human pluripotent stem cells may complement traditional cell culture and animal experiments for nephrotoxicity assessment. Here we evaluate the capability of kidney organoids to investigate drug toxicity .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!