Mesoporous alumina from colloidal biotemplating of Al clusters.

Chemistry

Institut Charles Gerhardt Montpellier, UMR 5253 CNRS/UM2/ENSCM/UM1, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5 (France).

Published: February 2015

A simple and green synthesis route was disclosed for the achievement of mesoporous alumina microparticles employing polysaccharide nanoparticles (α-chitin nanorods) as templates. Pore textures can be tuned by the cationic alumina precursor. Compared to small cations, the use of Al13 and Al30 oxo-hydroxo clusters leads to better defined and elongated mesopores. Electron microscopy and spectroscopic ((13) C, (27) Al NMR, XPS) measurements demonstrated that this is related to the effective coating of α-chitin nanorods by these pre-condensed colloids.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201405444DOI Listing

Publication Analysis

Top Keywords

mesoporous alumina
8
α-chitin nanorods
8
alumina colloidal
4
colloidal biotemplating
4
biotemplating clusters
4
clusters simple
4
simple green
4
green synthesis
4
synthesis route
4
route disclosed
4

Similar Publications

The treatment of effluents from the pharmaceutical industry currently remains a major challenge due to their impact on the environment and public health along with the cost of treatments. Considering these issues, our work focused on the development of materials with effective adsorption properties to treat industrial effluents based on locally available and inexpensive clays and zeolite. Local Algerian kaolin (Djebel Debbagh), palygorskite (Ghoufi) and zeolite (Tinbdar) were treated thermally and chemically prior to synthesis into mesoporous materials of hexagonal structure using pluronic P123 as surfactant.

View Article and Find Full Text PDF

Room-temperature phosphorescent (RTP) carbon dots (CDs) demonstrate significant potential applications in the field of information anticounterfeiting due to their excellent optical properties. However, RTP emission of CDs remains significantly limited due to the spin-forbidden properties of triplet exciton transitions. In this work, an in situ nitrogen doping strategy was employed to design and construct strong spin-orbit coupling nitrogen-doped CDs with mesoporous silica with alumina (N-CDs@MS@AlO) RTP composites.

View Article and Find Full Text PDF

Nanotechnology has significantly advanced various fields, including therapeutic delivery, through the use of nanomaterials as drug carriers. The biocompatibility of ordered porous silica materials makes them promising candidates for drug delivery systems, particularly in the treatment of cancer and other diseases. This review summarizes the use of microporous zeolites and mesoporous silica materials in drug delivery, focusing on their physicochemical properties and applications as drug carriers.

View Article and Find Full Text PDF
Article Synopsis
  • A novel bionanocomposite, chitosan-coated activated natural bentonite clay (CCANBC), was developed from waste biomass to effectively remove nickel (Ni) and Eosin Y from wastewater.
  • The bionanosorbents exhibited impressive properties, including high crystallinity and thermal stability, and demonstrated significant adsorption capabilities, achieving 186.42 mg/g for Ni and 238.37 mg/g for Eosin Y, while being thoroughly characterized using various analytical techniques.
View Article and Find Full Text PDF

As an important nonoil route for acquiring aromatics, the highly efficient conversion of methanol to aromatics over Zn/ZSM-5 zeolites remains an ongoing challenge. In this work, we developed a uniform loading approach of zinc and further combined it with a hollow capsule structure to design the high-performance Zn/ZSM-5 catalyst. The electrostatic assembly among EDTA, -butylamine and negative silica-alumina gel gave rise to an "Inorganic-Organic Hybrid Sphere" in form of Na·{[(SiO)Al]/(SiO)(-butylamine)(EDTA)(-butylamine)(SiO), which further transformed into mesoporous aluminosilicates sphere (MASS) through calcination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!