We present the prediction of malaria infection in human plasma using Raman spectroscopy. Raman spectra of malaria-infected samples are compared with those of healthy and dengue virus infected ones for disease recognition. Raman spectra were acquired using a laser at 532 nm as an excitation source and 10 distinct spectral signatures that statistically differentiated malaria from healthy and dengue-infected cases were found. A multivariate regression model has been developed that utilized Raman spectra of 20 malaria-infected, 10 non-malarial with fever, 10 healthy, and 6 dengue-infected samples to optically predict the malaria infection. The model yields the correlation coefficient r(2) value of 0.981 between the predicted values and clinically known results of trainee samples, and the root mean square error in cross validation was found to be 0.09; both these parameters validated the model. The model was further blindly tested for 30 unknown suspected samples and found to be 86% accurate compared with the clinical results, with the inaccuracy due to three samples which were predicted in the gray region. Standard deviation and root mean square error in prediction for unknown samples were found to be 0.150 and 0.149, which are accepted for the clinical validation of the model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.20.1.017002 | DOI Listing |
Sci Rep
December 2024
Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand.
Interferon γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is produced and secreted from specific leukocytes such as neutrophils, eosinophils, and monocytes, which play key roles in the immune response to Plasmodium infections. This systematic review aimed to collate and critically appraise the current evidence on IP-10 levels in malaria patients. It provided insights into its role in malaria pathogenesis and potential as a biomarker for Plasmodium infections and disease severity.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pediatrics and Child Health Nursing, College of Medicine and Health Sciences, Bahir Dar, Ethiopia.
Introduction: Insecticide-treated bed nets are often used as a physical barrier to prevent infection of malaria. In Sub-Saharan Africa, one of the most important ways of reducing the malaria burden is the utilization of insecticide-treated bed nets. However, there is no sufficient information on the utilization of insecticide-treated bed nets and their associated factors in Ethiopia.
View Article and Find Full Text PDFNat Commun
December 2024
Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
Plasmodium malariae parasites are widely observed across the tropics and sub-tropics. This slow-growing species, known to maintain chronic asymptomatic infections, has been associated with reduced antimalarial susceptibility. We analyse 251 P.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Increasing reports of chloroquine resistance (CQR) in Plasmodium vivax endemic regions have led to several countries, including Indonesia, to adopt dihydroarteminsin-piperaquine instead. However, the molecular drivers of CQR remain unclear. Using a genome-wide approach, we perform a genomic analysis of 1534 P.
View Article and Find Full Text PDFParasit Vectors
December 2024
Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Morogoro, Tanzania.
Background: The Anopheles funestus group includes at least 11 sibling species, with Anopheles funestus Giles being the most studied and significant malaria vector. Other species, like Anopheles parensis, are understudied despite their potential role in transmission. This article provides insights into the biology and insecticide susceptibility of An.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!