Emergence of Carbapenem-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Clinical Isolates Collected from Some Libyan Hospitals.

Microb Drug Resist

1Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.

Published: June 2015

The aim of the present study was to investigate the molecular mechanism of carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates recovered from Libyan hospitals between April 2013 and April 2014. In total, 49 strains (24 P. aeruginosa and 25 A. baumannii) were isolated, including 21 P. aeruginosa and 22 A. baumannii isolates (87.75%) resistant to imipenem (minimum inhibitory concentrations ≥16 μg/ml). The blaVIM-2 gene was detected in 19 P. aeruginosa isolates. All imipenem-resistant P. aeruginosa isolates showed the presence of OprD mutations. Acquired OXA-carbapenemase-encoding genes were present in all A. baumannii isolates: blaOXA-23 (n=19) and blaOXA-24 (n=3). Finally, a total of 13 and 17 different sequence types were assigned to the 21 P. aeruginosa and the 22 A. baumannii carbapenem-resistant isolates, respectively. This study is the first report describing imipenem-resistant P. aeruginosa and A. baumannii isolated from patients in Libya. We report the first case of co-occurrence of blaVIM-2 with oprD porin loss in identical isolates of P. aeruginosa in Libya and demonstrate that these oprD mutations can be used as a tool to study the clonality in P. aeruginosa isolates. We also report the first identification of multidrug-resistant A. baumannii isolates harboring blaOXA-23-like, blaOXA-24-like, and blaOXA-48-like genes in Libya.

Download full-text PDF

Source
http://dx.doi.org/10.1089/mdr.2014.0235DOI Listing

Publication Analysis

Top Keywords

aeruginosa baumannii
16
baumannii isolates
12
aeruginosa isolates
12
aeruginosa
10
isolates
10
pseudomonas aeruginosa
8
aeruginosa acinetobacter
8
baumannii
8
acinetobacter baumannii
8
baumannii clinical
8

Similar Publications

ESKAPE pathogens rapidly develop resistance against antibiotics in development in vitro.

Nat Microbiol

January 2025

Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary.

Despite ongoing antibiotic development, evolution of resistance may render candidate antibiotics ineffective. Here we studied in vitro emergence of resistance to 13 antibiotics introduced after 2017 or currently in development, compared with in-use antibiotics. Laboratory evolution showed that clinically relevant resistance arises within 60 days of antibiotic exposure in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, priority Gram-negative ESKAPE pathogens.

View Article and Find Full Text PDF

Background: Colistin, a last-resort antibiotic for treating multidrug-resistant Gram-negative bacterial infections, has increased resistance as a result of the emergence of the gene. The 1gene, which confers colistin resistance, is often carried on plasmids, facilitating its spread by horizontal gene transfer among bacterial populations. The rising prevalence of 1mediated resistance poses significant challenges for infection control and treatment efficacy.

View Article and Find Full Text PDF

Patients with selective IgA deficiency could have various clinical presentations ranging from asymptomatic to severe respiratory or gastrointestinal tract infection, as well as autoimmune disease and allergic reactions. Selective IgA deficiency is relatively common in Caucasians, but it is rare in the Asian population, meaning it could be easily missed in the clinic. In this study, we report a 26-year-old man with a history of asthma and nephrotic syndrome.

View Article and Find Full Text PDF

Background: Nosocomial pneumonia is a significant healthcare challenge, particularly in the face of rising antimicrobial resistance among Gram-negative bacteria. The production of extended spectrum beta-lactamase (ESBL) exacerbates treatment complexities.

Aim: This study investigates the prevalence and resistance patterns of ESBL-producing and non-ESBL Gram-negative bacteria in nosocomial pneumonia cases in Georgian hospitals to inform antibiotic stewardship and treatment strategies.

View Article and Find Full Text PDF

Measuring water pollution effects on antimicrobial resistance through explainable artificial intelligence.

Environ Pollut

January 2025

Università degli Studi di Bari Aldo Moro, Dipartimento Interateneo di Fisica M. Merlin, Bari, 70125, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, 70125, Italy.

Antimicrobial resistance refers to the ability of pathogens to develop resistance to drugs designed to eliminate them, making the infections they cause more difficult to treat and increasing the likelihood of disease diffusion and mortality. As such, antimicrobial resistance is considered as one of the most significant and universal challenges to both health and society, as well as the environment. In our research, we employ the explainable artificial intelligence paradigm to identify the factors that most affect the onset of antimicrobial resistance in diversified territorial contexts, which can vary widely from each other in terms of climatic, economic and social conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!