Application of a nitric oxide sensor in biomedicine.

Biosensors (Basel)

Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; E-Mails: (J.P.L.A.); (A.S.S.-H.).

Published: March 2014

In the present study, we describe the biochemical properties and effects of nitric oxide (NO) in intact and dysfunctional arterial and venous endothelium. Application of the NO electrochemical sensor in vivo and in vitro in erythrocytes of healthy subjects and patients with vascular disease are reviewed. The electrochemical NO sensor device applied to human umbilical venous endothelial cells (HUVECs) and the description of others NO types of sensors are also mentioned.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4264366PMC
http://dx.doi.org/10.3390/bios4010001DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
electrochemical sensor
8
application nitric
4
oxide sensor
4
sensor biomedicine
4
biomedicine study
4
study describe
4
describe biochemical
4
biochemical properties
4
properties effects
4

Similar Publications

Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.

View Article and Find Full Text PDF

Background And Aim: In the context of gastrointestinal diseases, the role of monoacylglycerol lipase (MAGL) is significant. Therefore, the objective of this study was to examine the protective effects of MAGL inhibition using JZL184 in rat models of severe acute pancreatitis (SAP) and to explore its mechanism.

Methods: In this study, a rat model of SAP was established, and the rats were divided into three groups for treatment: the Control group (CON), the SAP group (SAP), and the SAP group treated with JZL184 (JZL184).

View Article and Find Full Text PDF

In this study, Chinese yam polysaccharides (CYPs) were fermented using M616, and changes in the chemical composition, structure, and anti-inflammatory activity of CYPs before and after fermentation were investigated. The carbohydrate content of M616-fermented CYP (CYP-LP) increased from 71.03% ± 2.

View Article and Find Full Text PDF

Management of traumatic brain injury and acute respiratory distress syndrome-What evidence exists? A scoping review.

J Intensive Care Soc

January 2025

Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA.

Introduction: Up to 20% of patients with traumatic brain injury (TBI) develop acute respiratory distress syndrome (ARDS), which is associated with increased odds of mortality. Guideline-based treatment for ARDS includes "lung protective" ventilation strategies, some of which are in opposition to "brain protective" strategies used for ventilation with patients with TBI. We conducted a scoping review of ventilation management strategies with clinical outcomes among patients with TBI and ARDS.

View Article and Find Full Text PDF

Recent advances in the role of gasotransmitters in necroptosis.

Apoptosis

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.

Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!