Although point mutations usually lead to minor localized changes in protein structure, replacement of conserved Pro-76 with Gly in iso-2-cytochrome c induces a major conformational change. The change in structure results from mutation-induced depression of the pK for transition to an alkaline conformation with altered heme ligation. To assess the importance of position 76 in stabilizing the native versus the alkaline structure, the equilibrium and kinetic properties of the pH-induced conformational change have been compared for normal and mutant iso-2-cytochrome c. The pKapp for the conformational change is reduced from 8.45 (normal iso-2) to 6.71 in the mutant protein (Gly-76 iso-2), suggesting that conservation of Pro-76 may be required to stabilize the native conformation at physiological pH. The kinetics of the conformational change for both the normal and mutant proteins are well-described by a single kinetic phase throughout most of the pH-induced transition zone. Over this pH range, a minimal mechanism proposed for horse cytochrome c [Davis, L. A., Schejter, A., & Hess, G. P. (1974) J. Biol. Chem. 249, 2624-2632] is consistent with the data for normal and mutant yeast iso-2-cytochromes c: NH KH----N + H+ kcf in equilibrium kcb A NH and N are native forms of cytochrome c with a 695-nm absorbance band, A is an alkaline form that lacks the 695-nm band, KH is a proton dissociation constant, and kcf and kcb are microscopic rate constants for the conformational change. The Gly-76 mutation increases kcf by almost 70-fold, but kcb and KH are unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00451a043DOI Listing

Publication Analysis

Top Keywords

conformational change
24
normal mutant
12
replacement conserved
8
change
7
conformational
6
conserved proline
4
alkaline
4
proline alkaline
4
alkaline conformational
4
change iso-2-cytochrome
4

Similar Publications

Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.

View Article and Find Full Text PDF

Exploring Biophysical and Chemoinformatics Approaches for Interactions of Ionic Liquids with Hemoglobin, DNA, BSA, and HSA.

Chem Biodivers

January 2025

SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.

This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.

View Article and Find Full Text PDF

Biomolecules usually adopt ubiquitous circular structures which are important for their functionality. Based on three-dimensional Langevin dynamics simulations, we investigate the conformational change of a polymer confined in a spherical cavity. Both passive and active polymers with either homogeneous or heterogeneous stiffness are analyzed in a comparative manner.

View Article and Find Full Text PDF

Angiotensin-I converting enzyme (ACE) regulates the levels of disparate bioactive peptides, notably converting angiotensin-I to angiotensin-II and degrading amyloid beta. ACE is a heavily glycosylated dimer, containing 4 analogous catalytic sites, and exists in membrane bound and soluble (sACE) forms. ACE inhibition is a frontline, FDA-approved, therapy for cardiovascular diseases yet is associated with significant side effects, including higher rates of lung cancer.

View Article and Find Full Text PDF

We introduce Hydrogen-Exchange Experimental Structure Prediction (HX-ESP), a method that integrates hydrogen exchange (HX) data with molecular dynamics (MD) simulations to accurately predict ligand binding modes, even for targets requiring significant conformational changes. Benchmarking HX-ESP by fitting two ligands to PAK1 and four ligands to MAP4K1 (HPK1), and comparing the results to X-ray crystallography structures, demonstrated that HX-ESP successfully identified binding modes across a range of affinities significantly outperforming flexible docking for ligands necessitating large conformational adjustments. By objectively guiding simulations with experimental HX data, HX-ESP overcomes the long timescales required for binding predictions using traditional MD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!