STIM2 enhances receptor-stimulated Ca²⁺ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions.

Sci Signal

Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Published: January 2015

A central component of receptor-evoked Ca(2+) signaling is store-operated Ca(2+) entry (SOCE), which is activated by the assembly of STIM1-Orai1 channels in endoplasmic reticulum (ER) and plasma membrane (PM) (ER-PM) junctions in response to depletion of ER Ca(2+). We report that STIM2 enhances agonist-mediated activation of SOCE by promoting STIM1 clustering in ER-PM junctions at low stimulus intensities. Targeted deletion of STIM2 in mouse salivary glands diminished fluid secretion in vivo and SOCE activation in dispersed salivary acinar cells stimulated with low concentrations of muscarinic receptor agonists. STIM2 knockdown in human embryonic kidney (HEK) 293 cells diminished agonist-induced Ca(2+) signaling and nuclear translocation of NFAT (nuclear factor of activated T cells). STIM2 lacking five carboxyl-terminal amino acid residues did not promote formation of STIM1 puncta at low concentrations of agonist, whereas coexpression of STIM2 with STIM1 mutant lacking the polybasic region STIM1ΔK resulted in co-clustering of both proteins. Together, our findings suggest that STIM2 recruits STIM1 to ER-PM junctions at low stimulus intensities when ER Ca(2+) stores are mildly depleted, thus increasing the sensitivity of Ca(2+) signaling to agonists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381927PMC
http://dx.doi.org/10.1126/scisignal.2005748DOI Listing

Publication Analysis

Top Keywords

ca2+ signaling
12
er-pm junctions
12
stim2 enhances
8
junctions low
8
low stimulus
8
stimulus intensities
8
low concentrations
8
stim2
7
ca2+
6
stim1
5

Similar Publications

Snake venom galactoside-binding lectin from Bothrops jararacussu: Special role in leukocytes activation and function.

Int J Biol Macromol

January 2025

Fundação de Medicina Tropical - Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Nilton Lins, Manaus, AM, Brazil. Electronic address:

Article Synopsis
  • SVgalLs are toxins from Bothrops snake venoms that bind to galactose-containing carbohydrates in a calcium-dependent way.
  • BjcuL, a key C-type lectin from Bothrops jararacussu venom, has been extensively studied for its role in inflammation by activating immune cell functions.
  • The review discusses the current knowledge on snake venom lectins' effects in pathophysiology and outlines future research directions, including advanced technologies for discovering new therapeutic targets.
View Article and Find Full Text PDF

Ubiquitination-deficit of Cnot4 impairs the capacity of proliferation and differentiation in mouse embryonic stem cells.

Biochem Biophys Res Commun

December 2024

Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China. Electronic address:

Article Synopsis
  • Neurodevelopmental abnormalities contribute to various neurological disorders, with ubiquitination being crucial for embryonic development and neurodevelopment.
  • Cnot4, an E3-ubiquitin ligase, was studied for its role in mouse embryonic stem cells (ESCs) where its ubiquitination-deficit led to decreased proliferation and increased ectodermal differentiation.
  • RNA sequencing revealed that genes linked to glucose metabolism and calcium signaling were affected, indicating Cnot4's significant role in regulating ESC behavior through ubiquitination.
View Article and Find Full Text PDF

TDCPP promotes apoptosis and inhibits the calcium signaling pathway in human neural stem cells.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) is an extensively used organophosphorus flame retardant (OFR). Previous studies have suggested that it has neurotoxic effects, but the neurotoxicity mechanism is still unclear. Neural stem cells are an important in vitro model for studying the neurotoxicity mechanism of pollutants.

View Article and Find Full Text PDF

Investigating the interaction between calcium signaling and ferroptosis for novel cancer treatment.

Phytomedicine

January 2025

Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China. Electronic address:

Article Synopsis
  • Drug resistance in cancer is increasing, highlighting the need for new therapeutic targets, particularly through ion interference strategies involving calcium ions (Ca).
  • The study investigates the link between calcium ions and ferroptosis (iron-induced cell death), suggesting that disrupted calcium balance could lead to increased ferroptosis in cancer cells, providing a novel treatment target.
  • Findings indicate that Ca modulates ferroptosis by affecting reactive oxygen species (ROS) and glutathione (GSH) levels in various cancer and normal cells, with potential applications for plant-derived compounds as effective anticancer treatments.
View Article and Find Full Text PDF

Contrary to the evidence supporting the role for insulin in stimulating uterine contraction, only a limited number of studies have highlighted the inhibitory effect of insulin on myometrial contractions in human and rodent. A hypothetical narrative review of the current literature was conducted, revealing the current literature and shows the potential inhibitory effects of insulin on myometrial contractility. These inhibitory mechanisms include activation of adenylyl cyclase signaling pathways, an increase in cAMP production, a decrease in Ca influx and cytosolic Ca, hyperpolarization of the cell membrane, and stimulation of NO synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!