Activation of Wnt/β-catenin/GSK3β signaling during the development of diabetic cardiomyopathy.

Cardiovasc Pathol

Key Laboratory for Rare Disease of Shandong Province, Department of Pharmacology, Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, 250062, China.

Published: March 2016

Background: As Wnt/β-catenin/glycogen synthase kinase 3β (GSK3β) signaling has been implicated in myocardial injury and diabetic cardiomyopathy (DCM) is a major part of diabetic cardiovascular complications, we therefore investigated the alterations of Wnt/β-catenin/GSK3β signaling during the development of DCM.

Methods: The rat model of diabetes mellitus (DM) was established using a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg). The alterations of Wnt/β-catenin/GSK3β signaling were determined 4, 8, and 12 weeks following DM using Western blotting, immunohistochemistry, and quantitative real-time reverse transcriptase polymerase chain reaction. Cardiac pathology changes were evaluated using hematoxylin and eosin, Masson trichromatic, and terminal dUTP nick-end labeling staining.

Results: Histological analyses revealed that DM induced significant myocardial injury and progressive cardiomyocyte apoptosis. The protein and mRNA levels of Wnt2, β-catenin, and c-Myc were progressively increased 4, 8, and 12 weeks following DM. The expression of T-cell factor 4 and phosphorylated of GSK3β on Ser9 were progressively increased. However, the expression of the endogenous Wnt inhibitor Dickkopf-1 was increased after STZ injection and then decreased as DCM developed.

Conclusion: Wnt/β-catenin/GSK3β signaling pathway is activated in the development of DCM. Further investigation into the role of Wnt signaling during DCM will functionally find novel therapeutic target for DCM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carpath.2014.12.002DOI Listing

Publication Analysis

Top Keywords

wnt/β-catenin/gsk3β signaling
16
signaling development
8
diabetic cardiomyopathy
8
myocardial injury
8
alterations wnt/β-catenin/gsk3β
8
progressively increased
8
signaling
6
dcm
5
activation wnt/β-catenin/gsk3β
4
development diabetic
4

Similar Publications

First-line immune checkpoint inhibitor (ICI) combinations show responses in subsets of hepatocellular carcinoma (HCC) patients. Nearly half of HCCs are Wnt-active with mutations in (encoding for β-catenin), , or , and demonstrate limited benefit to ICI due to an immune excluded tumor microenvironment. We show significant tumor responses in multiple β-catenin-mutated immunocompetent HCC models to a novel siRNA encapsulated in lipid nanoparticle targeting (LNP-CTNNB1).

View Article and Find Full Text PDF

The potential role of chromodomain helicase DNA-binding protein 3 in defining the cervical width by regulating the early growth stage of the apical papilla during tooth development.

J Oral Biosci

December 2024

Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan. Electronic address:

Objective: This study aimed to evaluate the role of the chromodomain helicase DNA-binding protein 3 (CHD3) in tooth morphogenesis in Chd3 knockout mice.

Methods: Chd3 knockout mice were generated using the CRISPR-Cas9 method. Mandibular first molars were extracted from the mice and their littermates and morphometrically analyzed.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) is a prevalent chronic disease that is becoming increasingly common worldwide and can lead to a number of dangerous complications. The Wnt signaling pathway is important for the onset and progression of diabetes. Wnt3a is a typical Wnt ligand that can increase the stability of β-catenin, control TCF7L2 expression, promote β-cell proliferation, and reduce apoptosis.

View Article and Find Full Text PDF

Background: Adipose mesenchymal stem cells (ADSCs) exert beneficial effects on kidney disease through a paracrine mechanism. However, the specific molecular mechanisms by which ADSCs treat renal fibrosis are not yet fully understood. Therefore, it is crucial to clarify the therapeutic effects of ADSC-derived extracellular vesicles (ADSC-EVs) on the progression of renal fibrosis and their underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!