Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR) effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263578PMC
http://dx.doi.org/10.3390/bios3030327DOI Listing

Publication Analysis

Top Keywords

sensor surface
12
superparamagnetic beads
8
beads sensor
8
magnetic forces
8
ultrasonic standing
8
standing waves
8
lab-on-a-chip magneto-immunoassays
4
magneto-immunoassays ensure
4
ensure contact
4
contact superparamagnetic
4

Similar Publications

Omnidirectionally Stretchable Spin-Valve Sensor Array with Stable Giant Magnetoresistance Performance.

ACS Nano

January 2025

CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations.

View Article and Find Full Text PDF

Despite the outstanding progress in photonic sensor devices, a major limitation for its application as label-free biosensors for biomedical analysis lies in the surface biofunctionalization step, that is, the reliable immobilization of the biorecognition element onto the sensor surface. Here, we report the integration of bottom-up synthesized nanoporous graphene onto bimodal waveguide interferometric biosensors as an atomically precise biofunctionalization scaffold. This combination leverages the high sensitivity of bimodal waveguide interferometers and the large functional surface area of nanoporous graphene to create highly sensitive, selective, and robust biosensors for the direct immunoassay detection of C-reactive protein (CRP), an inflammatory biomarker widely used in the clinical diagnosis of infections and sepsis.

View Article and Find Full Text PDF

Effective spatio-temporal measurements of water surface elevation (water waves) in laboratory experiments are essential for scientific and engineering research. Existing techniques are often cumbersome, computationally heavy and generally suffer from limited wavenumber/frequency response. To address these challenges a novel method was developed, using polarization filter equipped camera as the main sensor and Machine Learning (ML) algorithms for data processing [1,2].

View Article and Find Full Text PDF

Acetone is harmful to the environment and human health. Therefore, research on acetone sensors for its high-efficiency detection is necessary. Herein, an α-FeO-TiO-MXene heterojunction was synthesized using a simple precipitation method, and its sensitivity towards acetone was systematically investigated.

View Article and Find Full Text PDF

This work presents the design and validation of a thermal subsystem for a 1U CubeSat-type nanosatellite. The design encompasses two stages: regulating the satellite's temperature range through implementing passive control based on multilayer coatings and an electronic board capable of measuring the internal surface temperature of each of the satellite's six faces. Validation is conducted through tests performed in a theoretical thermo vacuum chamber that provides a controlled environment, simulating the thermal conditions to which the satellite will be exposed once in orbit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!