Multiplicity of TEM-derived beta-lactamases from Klebsiella pneumoniae strains isolated at the same hospital and relationships between the responsible plasmids.

Antimicrob Agents Chemother

Service de Bactériologie, Faculté de Médecine et Pharmacie, Clermont-Ferrand, France.

Published: November 1989

Five plasmid-mediated beta-lactamases conferring high-level resistance to ceftazidime were isolated from Klebsiella pneumoniae strains in the same hospital. These enzymes had isoelectric points ranging from 5.3 to 6.5 (CAZ-1, 5.55; CAZ-2, 6.0; CAZ-3, 5.3; CAZ-6, 6.5; and CAZ-7, 6.3). All isolates and their Escherichia coli transconjugants were highly resistant to amoxicillin (MICs, greater than 4,096 micrograms/ml), piperacillin (64 to 256 micrograms/ml), cephalothin (32 to 256 micrograms/ml), and ceftazidime (32 to 512 micrograms/ml) but remained moderately susceptible to cefotaxime (0.5 to 8 micrograms/ml). Only CAZ-6- and CAZ-7-producing strains were highly resistant to aztreonam (64 to 128 micrograms/ml). All the isolates remained susceptible to moxalactam and imipenem. The reduced activity of piperacillin, cefotaxime, ceftazidime, or aztreonam was restored by 2 micrograms of clavulanate, sulbactam, tazobactam, or brobactam per ml for E. coli producing CAZ-2, CAZ-3, and CAZ-7. Sulbactam had a lower protective effect than other inhibitors for E. coli harboring CAZ-1 and especially CAZ-6. Except for CAZ-1, which was mediated by a 150-kilobase (kb) plasmid (pCFF14), the other ceftazidimases were mediated by plasmids of 85 kb with EcoRI digestion patterns similar to that of pCFF04 encoding CTX-1 beta-lactamase. A TEM probe hybridized with a 19-kb EcoRI fragment of all these closely related plasmids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC172787PMC
http://dx.doi.org/10.1128/AAC.33.11.1915DOI Listing

Publication Analysis

Top Keywords

klebsiella pneumoniae
8
pneumoniae strains
8
caz-2 caz-3
8
highly resistant
8
256 micrograms/ml
8
micrograms/ml
6
multiplicity tem-derived
4
tem-derived beta-lactamases
4
beta-lactamases klebsiella
4
strains isolated
4

Similar Publications

The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.

View Article and Find Full Text PDF

Background: Multidrug-resistant bacteria (MDR) represent a significant global health concern and vary in specific settings. Spain reported several annual deaths attributed to MDR bacteria, mainly carbapenemase-producing Enterobacterales.

Objectives: We aimed to characterise the incidence and temporal trends of MDR bacterial infections or colonisations reported within the province of Granada (data from five hospitals), and to investigate factors linked to clinical vulnerability.

View Article and Find Full Text PDF

Foremost in the design of new β-lactamase inhibitors (BLIs) are the boronic acid transition state inhibitors (BATSIs). Two highly potent BATSIs being developed are S02030 and MB076 strategically designed to be active against cephalosporinases and carbapenemases, especially KPC. When combined with cefepime, S02030 and MB076 demonstrated potent antimicrobial activity against laboratory and clinical strains of expressing a variety of class A and class C β-lactamases, including and .

View Article and Find Full Text PDF

Background: Carbapenem-resistant urinary tract infections (CR-UTIs) are a major global health threat. Many factors contribute to the increasing incidence of CR-UTI. Owing to the limited availability of treatment options, CR-UTIs are highly challenging to treat.

View Article and Find Full Text PDF

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!