Tripropeptin C (TPPC) is a natural calcium-ion-dependent lipopeptide antibiotic that inhibits peptidoglycan biosynthesis by binding to prenyl pyrophosphate. It displays very potent antimicrobial activity both in vitro and in a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) septicemia. The combination of TPPC with all classes of beta-lactams tested (including penam, carbapenem, cephem and oxacephem) showed highly synergistic (SYN) effects against MRSA strains, but not against methicillin-sensitive S. aureus strains. These SYN effects were observed with both a checkerboard methodology and a time-kill analysis. The TPPC analog, bis-methyl ester-TPPC, which has neither antimicrobial activity nor the ability to bind prenyl pyrophosphate, also potentiated the activity of beta-lactams. This result indicates that the mechanism of the SYN activity of TPPC is independent of its binding to prenyl pyrophosphate. Therefore, synergistically enhancing the anti-MRSA activities of TPPC and beta-lactams by combining them is a novel and potentially powerful therapeutic strategy for MRSA infections.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ja.2014.169DOI Listing

Publication Analysis

Top Keywords

prenyl pyrophosphate
12
lipopeptide antibiotic
8
activity beta-lactams
8
methicillin-resistant staphylococcus
8
staphylococcus aureus
8
binding prenyl
8
antimicrobial activity
8
syn effects
8
activity
5
tppc
5

Similar Publications

Prenol production in a microbial host via the "Repass" Pathways.

Metab Eng

January 2025

Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA. Electronic address:

Prenol and isoprenol are promising advanced biofuels and serve as biosynthetic precursors for pharmaceuticals, fragrances, and other industrially relevant compounds. Despite engineering improvements that circumvent intermediate cytotoxicity and lower energy barriers, achieving high titer 'mevalonate (MVA)-derived' prenol has remained elusive. Difficulty in selective prenol production stems from the necessary isomerization of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) as well as the intrinsic toxicity of these diphosphate precursors.

View Article and Find Full Text PDF

Engineering dimer mutants of human geranylgeranyl pyrophosphate synthase.

PLoS One

January 2025

Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.

Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.

View Article and Find Full Text PDF

Use of Biotin-Labeled Geranyl Pyrophosphate for Analysis of Ykt6 Geranylgeranylation.

Methods Mol Biol

January 2025

Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.

Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.

View Article and Find Full Text PDF

Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation.

View Article and Find Full Text PDF

Prenylation consists of the modification of proteins with either farnesyl diphosphate (FPP) or geranylgeranyl diphosphate (GGPP) at a cysteine near the C-terminus of target proteins to generate thioether-linked lipidated proteins. In recent work, metabolic labeling with alkyne-containing isoprenoid analogues including C15AlkOPP has been used to identify prenylated proteins and track their levels in different diseases. Here, a systematic study of the impact of isoprenoid length on proteins labeled with these probes was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!