Chromone has been noted to be one of the most challenging substrates in the asymmetric 1,4-addition of α,β-unsaturated carbonyl compounds. By employing the rhodium complex associated with a chiral diene ligand, (R,R)-Ph-bod*, the 1,4-addition of a variety of arylboronic acids was realized to give high yields of the corresponding flavanones with excellent enantioselectivities (≥97% ee, 99% ee for most substrates). Ring-opening side products, which would lead to erosion of product enantioselectivity, were not observed under the stated reaction conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201403290 | DOI Listing |
Nanotechnology
January 2025
Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Bloco 922, 60455-900, Fortaleza, 60455-900, BRAZIL.
We investigate the electronic properties of nanoribbons made out of monolayer Lieb, transition, and kagome lattices using the tight-binding model with a generic Hamiltonian. It allows us to map the evolutionary stages of the interconvertibility process between Lieb and kagome nanoribbons by means of only one control parameter. Results for the energy spectra, the density of states, and spatial probability density distributions are discussed for nanoribbons with three types of edges: straight, bearded, and asymmetric.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institut für Theoretische Physik, Hardenbergstraße 36, Technische Universität Berlin, D-10623 Berlin, Germany.
Heterogeneity is ubiquitous in biological and synthetic active matter systems that are inherently out of equilibrium. Typically, such active mixtures involve not only conservative interactions between the constituents but also nonreciprocal couplings, whose full consequences for the collective behavior still remain elusive. Here, we study a minimal active nonreciprocal mixture with both symmetric isotropic and nonreciprocal polar interactions.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
Current dogma assumes that lipid asymmetry in biological membranes is actively maintained and dispensable for cell viability. The inner (cytoplasmic) membrane (IM) of is asymmetric. However, the molecular mechanism that maintains this uneven distribution is unknown.
View Article and Find Full Text PDFSci Adv
January 2025
Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia.
High-resolution cryo-electron microscopy (cryo-EM) requires costly 200- to 300-keV cryo-transmission electron microscopes (cryo-TEMs) with field emission gun (FEG) sources, stable columns, constant-powered lenses, autoloader, and direct electron detectors (DED). Recent advances in 100-keV imaging with the emergence of sub-200-keV optimized DED technology promises the development of more affordable cryo-TEMs. So far, 100-keV imaging has required microscopes with FEG sources.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!