The evolution of proton beam therapy: insights from early trials and tribulations.

Int J Radiat Oncol Biol Phys

Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania. Electronic address:

Published: November 2014

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2014.07.035DOI Listing

Publication Analysis

Top Keywords

evolution proton
4
proton beam
4
beam therapy
4
therapy insights
4
insights early
4
early trials
4
trials tribulations
4
evolution
1
beam
1
therapy
1

Similar Publications

The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.

View Article and Find Full Text PDF

Solvent Mediated Interfacial Microenvironment Design for High-Performance Electrochemical CO Reduction to C Products.

Small

January 2025

National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.

Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.

View Article and Find Full Text PDF

Building insights into the structure-performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.

View Article and Find Full Text PDF

Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity.

Crit Care

January 2025

Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.

Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.

View Article and Find Full Text PDF

We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!