This study assesses a protective effect of a mitochondria-targeted antioxidant SkQT1 (a mixture of 10-(6'-toluquinonyl) decyltriphenylphosphonium and 10-(5'-toluquinonyl) decyltriphenylphosphonium in proportion of 1.4:1), using an open focal trauma model of the rat brain sensorimotor cortex and a model of amyloid-beta1-42 (Abeta)-induced impairment of hippocampal long-term potentiation (LTP), a kind of synaptic plasticity associated with learning and memory. It was found that a trauma-induced neurological deficit could be partially improved with daily intraperitoneal injections of SkQT1 (250 nmol/kg) for 5 days after the trauma. Neither an analog of SkQT1 without thymoquinone (C12TPP) nor original thymoquinone without a cation residue was effective to improve such conditions. In the SkQ molecule, the phosphonium cation can be replaced by the rhodamine 19 cation, with the SkQTR1 being still active in the treatment of the neurological deficit. Application of 200 nM Abeta to rat hippocampal slices impaired the induction of LTP in the hippocampal CA1 pyramidal layer. A single intraperitoneal injection of SkQT1 (250 nmol/kg body weight) made 24 h before the slice preparation prevented the harmful effect of Abeta on the LTP. Thus mitochondria-targeted antioxidants, containing thymoquinone, have neuroprotective properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/1061186X.2014.997736 | DOI Listing |
Mol Biol Rep
January 2025
Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK.
Background: Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities.
View Article and Find Full Text PDFScand J Pain
January 2024
Crean College of Health and Behavioral Sciences, Department of Physical Therapy, Chapman University, Irvine, United States.
Objectives: Autonomic regulation has been identified as a potential regulator of pain via vagal nerve mediation, assessed through heart rate variability (HRV). Non-invasive vagal nerve stimulation (nVNS) and heart rate variability biofeedback (HRVB) have been proposed to modulate pain. A limited number of studies compare nVNS and HRVB in persons with chronic pain conditions.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Otolaryngology Head and Neck Surgery, Yanbian University Affiliated Hospital, Yanji City, Yanbian Korean Autonomous Prefecture, Jilin Province, China.
Introduction: This meta-analysis examined the relationship between age-related hearing loss (ARHL) and depression in older adults, and further explored whether this relationship is moderated by age and gender.
Methods: We searched in 4 English databases: PubMed, Embase, Web of Science, and Cochrane Library. Ultimately, we identified 9 studies, involving 3 cohort studies and 6 cross-sectional studies.
J Clin Neurophysiol
January 2025
Department of Neurology, Washington University in St Louis, St. Louis, MO.
Purpose: Continuous EEG (cEEG) monitoring is increasingly used in the management of neonates with seizures. There remains debate on what clinically relevant information can be gained from cEEG in neonates with suspected seizures, at high risk for seizures, or with definite seizures, as well as the use of cEEG for prognosis in a variety of conditions. In this guideline, we address these questions using American Clinical Neurophysiology Society structured methodology for clinical guideline development.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
Seizures elicited by corneal 6-Hz stimulation are widely acknowledged as a model of temporal lobe seizures. Despite the intensive research in rodents, no studies hint at this model in developing animals. We focused on seven age groups of both male and female rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!