Commercially-available shear wave imaging systems measure group shear wave speed (SWS) and often report stiffness parameters applying purely elastic material models. Soft tissues, however, are viscoelastic, and higher-order material models are necessary to characterize the dispersion associated with broadband shear waves. In this paper, we describe a robust, model-based algorithm and use a linear dispersion model to perform shear wave dispersion analysis in traditionally difficult-to-image subjects. In a cohort of 135 non-alcoholic fatty liver disease patients, we compare the performance of group SWS with dispersion analysis-derived phase velocity c(200 Hz) and dispersion slope dc/df parameters to stage hepatic fibrosis and steatosis. Area under the ROC curve (AUROC) analysis demonstrates correlation between all parameters [group SWS, c(200 Hz), and, to a lesser extent dc/df ] and fibrosis stage, whereas no correlation was observed between steatosis stage and any of the material parameters. Interestingly, optimal AUROC threshold SWS values separating advanced liver fibrosis (≥F3) from mild-to-moderate fibrosis (≤F2) were shown to be frequency-dependent, and to increase from 1.8 to 3.3 m/s over the 0 to 400 Hz shear wave frequency range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405169PMC
http://dx.doi.org/10.1109/TUFFC.2014.006653DOI Listing

Publication Analysis

Top Keywords

shear wave
16
fibrosis steatosis
8
material models
8
fibrosis
5
shear
5
dispersion
5
derivation analysis
4
analysis viscoelastic
4
viscoelastic properties
4
properties human
4

Similar Publications

Prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma through ultrasound elastography.

World J Gastroenterol

January 2025

Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China.

In this article, we comment on the article by Cheng published in recently. Posthepatectomy liver failure (PHLF) remains a leading cause of hepatectomy-related mortality and can be evaluated according to liver reserve function. Liver stiffness (LS) measured by ultrasonic elastography and spleen area demonstrate a strong correlation with hepatic proliferation, fibrosis, and portal vein congestion, thus indirectly reflecting liver reserve function.

View Article and Find Full Text PDF

Purpose: This study evaluates the effectiveness of lacrimal gland ultrasonography (LGUS) and shear wave elastography (SWE) in distinguishing primary Sjögren's syndrome (PSS) patients from healthy controls and examines their role in assessing disease activity and prognosis.

Methods: A total of 35 PSS patients and 23 age- and gender-matched healthy controls were included. LGUS was used to grade lacrimal gland structure, while SWE assessed gland elasticity.

View Article and Find Full Text PDF

Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.

Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.

View Article and Find Full Text PDF

The steep temperature gradient near the bottom of the mantle is known to generate a negative correlation between the shear wave velocity ( ) and the depth in most regions of the D″ layer, as detected by seismological observations. However, increasing with depth is observed at the D″ layer beneath Central America, where the Farallon slab sinks, and the origin of this anomaly has not been well constrained. Here, we calculate the thermoelastic constants and obtain the elastic wave velocities of hydrous phase H with various Al contents and cation configurations, which may act as a water carrier to the D″ layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!