Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The imitation of macroscopic movements at the molecular level is a key step in the development of nanomachines. The challenge is the synthesis of molecules that are able to transform external stimuli into a direction-controlled mechanical movement. The more complex such motion sequences are, the more difficult is the construction of the corresponding nanomachine. Here, we present a system that demonstrates a unidirectional, four-state switching cycle that bears similar characteristics to the arm movements of a human breaststroke swimmer. Like the latter, the molecules have a torso and two arms. The arms consist of bipyridine units and can be folded and stretched by addition and removal of copper ions. The unidirectional rotation of the arms is achieved by light-induced switching of an azo unit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.5b00026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!