The Dynamics and Environmental Influence on Interactions Between Cassava Brown Streak Disease and the Whitefly, Bemisia tabaci.

Phytopathology

First, sixth, and seventh authors: Ministry of Agriculture, Food Security and Cooperatives-Ukiriguru Research, P.O. Box 1433, Mwanza, Tanzania; second author: Ministry of Agriculture, Food Security and Cooperatives-Maruku Research, P.O. Box 127, Bukoba, Tanzania; third author: Ministry of Agriculture, Food Security and Cooperatives-Naliendele Research, P.O. Box 509, Mtwara, Tanzania; fourth author: Ministry of Agriculture, Food Security and Cooperatives-Kizimbani Research, P.O. Box 159, Zanzibar, Tanzania; fifth author: Ministry of Agriculture, Food Security and Cooperatives-Kibaha Research, P.O. Box 30031, Kibaha, Tanzania; eighth author: Geospace, Roseboomlaan 38, 6717 ZB Ede, Netherlands; ninth author: Nelson Mandela African Institute of Science and Technology, P.O. Box 447, Arusha, Tanzania; and tenth author: International Institute of Tropical Agriculture, P.O. Box 34441, Dar es Salaam, Tanzania.

Published: May 2015

Cassava brown streak disease (CBSD) is currently the most significant virus disease phenomenon affecting African agriculture. In this study, we report results from the most extensive set of field data so far presented for CBSD in Africa. From assessments of 515 farmers' plantings of cassava, incidence in the Coastal Zone of Tanzania (46.5% of plants; 87% of fields affected) was higher than in the Lake Zone (22%; 34%), but incidences for both zones were greater than previous published records. The whitefly vector, Bemisia tabaci, was more abundant in the Lake Zone than the Coastal Zone, the reverse of the situation reported previously, and increased B. tabaci abundance is driving CBSD spread in the Lake Zone. The altitudinal "ceiling" previously thought to restrict the occurrence of CBSD to regions <1,000 masl has been broken as a consequence of the greatly increased abundance of B. tabaci in mid-altitude areas. Among environmental variables analyzed, minimum temperature was the strongest determinant of CBSD incidence. B. tabaci in the Coastal and Lake Zones responded differently to environmental variables examined, highlighting the biological differences between B. tabaci genotypes occurring in these regions and the superior adaptation of B. tabaci in the Great Lakes region both to cassava and low temperature conditions. Regression analyses using multi-country data sets could be used to determine the potential environmental limits of CBSD. Approaches such as this offer potential for use in the development of predictive models for CBSD, which could strengthen country- and continent-level CBSD pandemic mitigation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-05-14-0146-RDOI Listing

Publication Analysis

Top Keywords

lake zone
12
cassava brown
8
brown streak
8
streak disease
8
bemisia tabaci
8
coastal zone
8
zone
5
dynamics environmental
4
environmental influence
4
influence interactions
4

Similar Publications

Strawberry viruses are significant pathogenic agents in strawberry. The development and application of efficient virus detection technology can effectively reduce the economic losses incurred by virus diseases for strawberry cultivators. In order to rapidly identify strawberry virus species and prevent the spread of virus disease, a multiplex reverse transcription polymerase chain reaction system was established for the simultaneous detection and identification of strawberry mild yellow edge virus (SMYEV), strawberry vein banding virus (SVBV), strawberry mottle virus (SMoV), strawberry polerovirus 1 (SPV-1), strawberry pallidosis-associated virus (SPaV), and strawberry crinivirus 4 (SCrV-4).

View Article and Find Full Text PDF

Solar ultraviolet (UV) is among the most important ecological factors shaping the composition of biota on the planet's surface, including the upper layers of waterbodies. Inhabitants of dark environments recently evolving from surface organisms provide natural opportunities to study the evolutionary losses of UV adaptation mechanisms and better understand how those mechanisms function at the biochemical level. The ancient Lake Baikal is the only freshwater reservoir where deep-water fauna emerged, and its diverse endemic amphipods (Amphipoda, Crustacea) now inhabit the whole range from highly transparent littoral to dark depths of over 1600 m, which makes them a convenient model to study UV adaptation.

View Article and Find Full Text PDF

Water level fluctuation regulated the effect of bacterial community on ecosystem multifunctionality in Poyang Lake wetland.

J Environ Manage

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China. Electronic address:

Soil bacterial communities are critical for maintaining ecosystem functions, yet the impact of water level fluctuations on ecosystem multifunctionality (EMF) and the role of bacterial communities in the lake water-level-fluctuating zone (WLFZ) remain poorly understood. This study investigated how seasonal water level fluctuations influence EMF and their relationships with soil bacterial communities through a two-year field survey. We found that soil bacterial diversity was significantly positively correlated with EMF.

View Article and Find Full Text PDF

Formal systems supporting the delivery of high-quality cassava seed are being established in several key cassava producing countries in Africa. Questions remain, however, about the value of certified cassava seed when compared to seed which is recycled multiple times, which is standard farmer practice. A study was therefore conducted to compare fresh cassava root yields of high-quality seed (HQS) versus farmer-saved (recycled) seed (FSS) for three widely grown improved cassava varieties in Tanzania namely: , and .

View Article and Find Full Text PDF

Highly efficient enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides via interfacial biocatalysis in Pickering emulsions.

Food Chem

December 2024

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China. Electronic address:

Article Synopsis
  • A novel Pickering interfacial biocatalysis (PIB) system was created for the enzymatic hydrolysis of algae and fish oils to enrich n-3 PUFAs glycerides.
  • Lipase AY 400SD was successfully immobilized on hollow core-shell silica nanoparticles, enhancing its effectiveness as an emulsifier in the water-in-oil Pickering emulsion.
  • The PIB system increased the n-3 PUFAs content by 9.17% to 23.09% and achieved over 90% recovery of n-3 PUFAs, proving to be stable and recyclable for future use.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!