Diffusion tensor characteristics of gyrencephaly using high resolution diffusion MRI in vivo at 7T.

Neuroimage

Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany; The University of Queensland, Centre for Advanced Imaging, Brisbane, Australia. Electronic address:

Published: April 2015

Gyrification of the human cerebral cortex allows for the surface expansion that accommodates many more cortical neurons in comparison to other mammals. For neuroimaging, however, it forms a feature that complicates analysis. For example, it has long been established that cortical layers do not occupy the same depth in gyri and sulci. Recently, in vivo diffusion imaging has provided insights into the fibre architecture of the cortex, usually showing radial tensor orientations. This makes it relevant to investigate whether cortical diffusion tensor metrics depend on the gyral pattern. High-resolution (1mm isotropic) diffusion weighted MRI of the medial wall of the hemispheres was performed at 7 T. Diffusion data were resampled to surfaces in the cortex and underlying white matter, where the cortical surfaces obeyed the equivolume principle for cortical laminae over the cortical curvature. Diffusion tensor metrics were averaged over bins of curvature to obtain maps of characteristic patterns in the gyrus. Diffusivity, anisotropy and radiality varied with curvature. Radiality was maximal in intermediate layers of the cortex next to the crown of the gyrus, not in white matter or on the crown. In the fundus, the deep cortical layers had tangential tensor orientations. In the white matter, tensor orientation changed from radial on the crown to tangential under the banks and fundus. White matter anisotropy gradually increased from the crown to the fundus. The characteristic pattern in the gyrus demonstrated here is in accordance with ex vivo diffusion MR microscopy and histological studies. The results indicate the necessity of taking into account the gyral pattern when cortical diffusion data is analysed. Additionally, the data suggest a confound for tractography approaches when reaching the gyrus, resulting in a possible bias towards the gyral crown. The implications for mechanisms that could drive cortical folding are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2015.01.001DOI Listing

Publication Analysis

Top Keywords

white matter
16
diffusion tensor
12
diffusion
9
cortical
9
cortical layers
8
vivo diffusion
8
tensor orientations
8
cortical diffusion
8
tensor metrics
8
gyral pattern
8

Similar Publications

Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain's overall function. Despite the structural loss, previous research has shown that normative patterns of functions remain intact across the lifespan, defined as the compensatory mechanism of the aging brain.

View Article and Find Full Text PDF

Usefulness of Myelin Quantification Using Synthetic Magnetic Resonance Imaging for Predicting Outcomes in Patients With Acute Ischemic Stroke.

Stroke

January 2025

Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (M.T., T.N., S.A., H.M.).

Background: Synthetic magnetic resonance imaging (MRI) is an innovative MRI technology that enables the acquisition of multiple quantitative values, including T1 and T2 values, proton density, and myelin volume, in a single scan. Although the usefulness of myelin measurement with synthetic MRI has been reported for assessing several diseases, investigations in patients with stroke have not been reported. We aimed to explore the utility of myelin quantification using synthetic MRI in predicting outcomes in patients with acute ischemic stroke.

View Article and Find Full Text PDF

Inflammation is becoming increasingly recognised as a core feature of dementia with evidence indicating that its role may vary and adapt across different stages of the neurodegenerative process. This study aimed to investigate whether the associations of high-sensitivity C-reactive protein (hs-CRP) with neuropsychological performance (verbal memory, executive function, processing speed) and cerebral white matter hyperintensities (WMHs) differed between older adults with subjective cognitive decline (SCD;  = 179) and mild cognitive impairment (MCI;  = 286). Fasting serum hs-CRP concentrations were grouped into low (<1.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is one of the most common disabling central nervous system diseases affecting young adults. Magnetic resonance imaging (MRI) is an essential tool for diagnosing and following up multiple sclerosis. Over the years, many MRI techniques have been developed to improve the sensitivity of MS disease detection.

View Article and Find Full Text PDF

Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!