Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lipopolysaccharides (LPS) activate nuclear factor kappa B (NF-κB), a transcription factor that is involved in inflammatory response. The pathways that activate NF-κB can be modulated by phytochemicals derived from garlic. We recently demonstrated that aged red garlic extract (ARGE), a new formulation of garlic, decreases nitric oxide (NO) generation by upregulating of heme oxygenase-1 (HO-1) in RAW 264.7 cells activated by LPS. However, the effects of ARGE on LPS-induced NF-κB activation are unknown. This study was performed to evaluate whether ARGE regulates LPS-induced NO production by modulation of NF-κB activation in macrophages. The inhibition of NF-κB by Bay 11-7085, an inhibitor of NF-κB, decreased LPS-induced NO production. ARGE treatment markedly reduced LPS-induced NO production and NF-κB nuclear translocation. ARGE downregulated expression of inducible nitric oxide synthase (iNOS) and upregulated expression of HO-1, a cytoprotective and anti-inflammatory protein. However, Bay 11-7085 only reduced iNOS expression. The NO production and iNOS expressions upregulated by suppression of HO-1 were suppressed by treatment with ARGE and Bay 11-7085. These results show that ARGE reduces LPS-induced NO production in macrophages through inhibition of NF-κB nuclear translocation and HO-1 activation. Compared to Bay 11-7085, ARGE may enhance anti-inflammatory effects by controlling other anti-inflammatory signals as well as regulation of NF-κB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/jmf.2014.3214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!