Molecular characterization of the cytochrome b gene and in vitro atovaquone susceptibility of Plasmodium falciparum isolates from Kenya.

Antimicrob Agents Chemother

Department of Emerging Infectious Diseases-Global Emerging Infections Surveillance and Response System (DEID-GEIS) Program, U.S. Army Medical Research Unit-Kenya (USAMRU-K), Kenya Medical Research Institute (KEMRI)-Walter Reed Project, Kisumu, Kenya

Published: March 2015

The prevalence of a genetic polymorphism(s) at codon 268 in the cytochrome b gene, which is associated with failure of atovaquone-proguanil treatment, was analyzed in 227 Plasmodium falciparum parasites from western Kenya. The prevalence of the wild-type allele was 63%, and that of the Y268S (denoting a Y-to-S change at position 268) mutant allele was 2%. There were no pure Y268C or Y268N mutant alleles, only mixtures of a mutant allele(s) with the wild type. There was a correlation between parasite 50% inhibitory concentration (IC50) and parasite genetic polymorphism; mutant alleles had higher IC50s than the wild type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325819PMC
http://dx.doi.org/10.1128/AAC.03956-14DOI Listing

Publication Analysis

Top Keywords

mutant alleles
12
cytochrome gene
8
plasmodium falciparum
8
kenya prevalence
8
wild type
8
molecular characterization
4
characterization cytochrome
4
gene vitro
4
vitro atovaquone
4
atovaquone susceptibility
4

Similar Publications

Introduction: The genetic complexity of Plasmodium falciparum is contributory to the emergence of drug resistant-parasites. Intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) in malaria endemic settings is recommended by WHO. This study evaluated the prevalence of Plasmodium falciparum multidrug resistance-1 gene (Pfmdr-1), genetic diversity of merozoite surface proteins (msp-1, msp-2) and glutamate-rich protein (glurp) among pregnant women with sub-patent parasitaemia from southwest Nigeria.

View Article and Find Full Text PDF

Hoxa5 plays numerous roles in development, but its downstream molecular effects are mostly unknown. We applied bulk RNA-seq assays to characterize the transcriptional impact of the loss of Hoxa5 gene function in seven different biological contexts, including developing respiratory and musculoskeletal tissues that present phenotypes in Hoxa5 mouse mutants. This global analysis revealed few common transcriptional changes, suggesting that HOXA5 acts mainly via the regulation of context-specific effectors.

View Article and Find Full Text PDF

Mutations in Cholangiocarcinoma: Prevalence, Prognostic Value, and G12/G13 Detection in Cell-Free DNA.

Cancer Genomics Proteomics

December 2024

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;

Background/aim: Cholangiocarcinoma (CCA) is an aggressive hepatobiliary malignancy characterized by genomic heterogeneity. KRAS mutations play a significant role in influencing patient prognosis and guiding therapeutic decision-making. This study aimed to determine the prevalence and prognostic significance of KRAS mutations in CCA, asses the detection of KRAS G12/G13 mutations in plasma cell-free DNA (cfDNA), and evaluate the prognostic value of KRAS G12/G13 mutant allele frequency (MAF) in cfDNA in relation to clinicopathological data and patient survival.

View Article and Find Full Text PDF

Biomarkers that identify tumors with better/worse prognosis can help reduce treatment costs and contribute to patient survival. In urothelial bladder cancer (UBC), accurate prediction of recurrence and progression is essential to inform therapeutic management. Herein, we explore the role of genetic variants of xenobiotic metabolic pathways in UBC susceptibility and prognosis.

View Article and Find Full Text PDF

European Genotyping Survey of Dyserythropoietic Anemia and Myopathy Syndrome in English Springer Spaniels.

Vet Sci

November 2024

Department of Small Animal Internal Medicine, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.

Dyserythropoietic anemia and myopathy syndrome (DAMS) with neonatal losses was recently characterized as an autosomal recessive disorder caused by an frameshift variant in English Springer Spaniels (ESSPs). The frequency and dissemination of the mutation remained unknown. The EHBP1L1 protein is essential for muscle function, and the Rab8/10-EHBP1L1-Bin1-dynamin axis participates in nuclear polarization during the enucleation of erythroblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!