Therapeutic peptides are highly attractive drugs for the treatment of various diseases. However, their poor pharmacokinetics due to rapid renal elimination limits their clinical applications. In this study, a model hormone peptide, leuprolide, was covalently linked to core-cross-linked polymeric micelles (CCL-PMs) via two different hydrolysable ester linkages, thereby yielding a nanoparticulate system with tuneable drug release kinetics. The ester linkage that provided the slowest peptide release kinetics was selected for in vivo evaluation. Compared to the soluble peptide, the leuprolide-entrapped CCL-PMs showed a prolonged circulation half-life (14.4h) following a single intravenous injection in healthy rats and the released leuprolide was detected in blood for 3days. In addition, the area under the plasma concentration-time curve (AUC) value was >100-fold higher for leuprolide-entrapped CCL-PMs than for soluble leuprolide. Importantly, the released peptide remained biologically active as demonstrated by increased and long-lasting plasma testosterone levels. This study shows that covalent linkage of peptides to CCL-PMs via hydrolytically sensitive ester bonds is a promising approach to achieving sustained systemic levels of peptides after intravenous administration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2014.12.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!