This study aimed at describing the main chemical and technology features of eight Iranian wheat flours collected from industrial and artisanal mills. Their suitability for bread making was investigated using autochthonous sourdough starters. Chemical analyses showed high concentration of fibers and ash, and technology aptitude for making breads. As shown through 2-DE analyses, gliadin and glutenin subunits were abundant and varied among the flours. According to the back slopping procedure, type I sourdoughs were prepared from Iranian flours, and lactic acid bacteria were typed and identified. Strains of Pediococcus pentosaceus, Weissella cibaria, Weissella confusa, and Leuconostoc citreum were the most abundant. Based on the kinetics of growth and acidification, quotient of fermentation and concentration of total free amino acids, lactic acid bacteria were selected and used as sourdough mixed starters for bread making. Compared to spontaneous fermentation, sourdoughs fermented with selected and mixed starters favored the increase of the concentrations of organic acids and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities. Although the high concentration of fibers, selected and mixed starters improved the textural features of the breads. This study might had contribute to the exploitation of the potential of Iranian wheat flours and to extend the use of sourdough, showing positive technology, nutritional and, probably, economic repercussions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2014.10.011DOI Listing

Publication Analysis

Top Keywords

iranian wheat
12
wheat flours
12
mixed starters
12
chemical technology
8
technology features
8
autochthonous sourdough
8
sourdough starters
8
making breads
8
breads study
8
bread making
8

Similar Publications

Surveillance and mapping of tribenuron-methyl-resistant weeds in wheat fields.

Sci Rep

November 2024

Crop, Soil, and Environmental Management Program, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.

Article Synopsis
  • Tribenuron-methyl (TBM) is a popular herbicide in Iran for managing broadleaf weeds in wheat due to its low toxicity, effectiveness, and lower cost, but farmers face issues with its performance and resistance.
  • A study involving 240 weed populations from 153 wheat fields revealed that over half (51.7%) exhibited resistance to TBM, with specific species like Sinapis arvensis and Malva neglecta showing significant resistance rates.
  • This research highlights the growing problem of herbicide resistance in Iranian wheat fields and emphasizes the need for future management strategies to prevent yield loss and environmental harm.
View Article and Find Full Text PDF

Evaluation of genetic biodiversity for micronutrients is crucial for breeding high-quality crops and addressing the negative impacts of mineral deficiencies. The objectives of this research were to assess genetic variation and the relationship between grain Fe and Zn levels and agronomic traits in a diverse collection of wheat varieties. Additionally, the study aimed to determine the correlation between microsatellite markers (SSR) and micronutrient quantities.

View Article and Find Full Text PDF

Wheat germ is one of the richest natural sources of polyamines, especially spermidine. Cell proliferation property of polyamines has given them inductive effects in the reduction of a variety of chronic diseases and fertility enhancement. Preparing a polyamine-rich extract powder from wheat germ for use in supplements is the aim of the present study.

View Article and Find Full Text PDF

The significance of flour in the Iranian diet underscores the need to ensure its safety from chemical pollutants. This study aimed to evaluate the potential health risks posed by certain heavy metals, such as Fe, Zn, Cu, Al, Co, Hg, Cr, Ni, Pb, and Cd, in wheat flour available in the Iranian market. A total of 248 flour samples were collected from 11 provinces in Iran during the winter of 2021.

View Article and Find Full Text PDF

This research presents a novel method for measuring ethanol concentrations using a smartphone. The method involves an oxidation reaction with potassium dichromate and concentrated sulfuric acid, resulting in a green-blue color formation. The color intensity, corresponding to ethanol concentrations ranging from 0 to 100%, was captured using a smartphone camera within a specialized photography box.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!