Over recent decades, a multitude of studies have shown the ability of silicon (Si) to protect various plants against a range of microbial pathogens exhibiting different lifestyles and infection strategies. Despite this relative wealth of knowledge, an understanding of the action mechanism of Si is still in its infancy, which hinders its widespread application for agricultural purposes. In an attempt to further elucidate the molecular underpinnings of Si-induced disease resistance, we studied the transcriptome of control and Si-treated rice plants infected with the necrotrophic brown spot fungus Cochliobolus miyabeanus. Analysis of brown spot-infected control plants suggested that C. miyabeanus represses plant photosynthetic processes and nitrate reduction in order to trigger premature senescence and cause disease. In Si-treated plants, however, these pathogen-induced metabolic alterations are strongly impaired, suggesting that Si alleviates stress imposed by the pathogen. Interestingly, Si also significantly increased photorespiration rates in brown spot-infected plants. Although photorespiration is often considered as a wasteful process, recent studies have indicated that this metabolic bypass also enhances resistance during abiotic stress and pathogen attack by protecting the plant's photosynthetic machinery. In view of these findings, our results favour a scenario in which Si enhances brown spot resistance by counteracting C. miyabeanus-induced senescence and cell death via increased photorespiration. Moreover, our results shed light onto the mechanistic basis of Si-induced disease control and support the view that, in addition to activating plant immune responses, Si can also reduce disease severity by interfering with pathogen virulence strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638399 | PMC |
http://dx.doi.org/10.1111/mpp.12236 | DOI Listing |
Chem Biodivers
January 2025
Yantai Institute of Coastal Zone Research, Coastal biology and Bioresource Utilization, 17 Chunhui Road, 264003, Yantai, CHINA.
The fungal genus Fusarium is a treasure-trove of structurally diverse secondary metabolites, contributed greatly by marine-derived strains. A new cedrane sesquiterpene, fusacedrol (1), and a new fusarin member, fusarin M (2), were isolated from F. graminearum 12Ⅱ2N that was isolated as an endophyte from the marine brown alga Sargassum sp.
View Article and Find Full Text PDFBiology (Basel)
January 2025
School of Life and Health Science College, Kaili University, Kaili 556011, China.
The industry plays an important role in the economic development of Yuanjiang county of Yuxi city in Yunnan province, China. In order to reduce the harm of diseases and ensure the quality of products, the occurrence of was investigated. The pathogenic fungi of wild and cultivated species of were isolated by a tissue separation method, and DNA sequencing was carried out by using the sequence analysis of the ribosomal rDNA-ITS region, and the pathogenic fungi were classified and identified by finally combining morphological observations.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou, China.
The tea mosquito bug, Waterhouse (Hemiptera: Miridae), is a devastating piercing-sucking pest in tropical tea plantations. The Hainan Dayezhong (HNDYZ) is a large-leaf tea cultivar widely cultivated around the Hainan tea region in South China. However, information regarding the feeding damage of on the HNDYZ tea plant remains scarce.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Agricultural Information Technology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
Identification and diagnosis of tobacco diseases are prerequisites for the scientific prevention and control of these ailments. To address the limitations of traditional methods, such as weak generalization and sensitivity to noise in segmenting tobacco leaf lesions, this study focused on four tobacco diseases: angular leaf spot, brown spot, wildfire disease, and frog eye disease. Building upon the Unet architecture, we developed the Multi-scale Residual Dilated Segmentation Model (MD-Unet) by enhancing the feature extraction module and integrating attention mechanisms.
View Article and Find Full Text PDFPlant Dis
January 2025
Guangxi University, College of Agriculture, Nanning, Guangxi, China;
Disocatus ackermannii, commonly referred to as Orchid Cactus, is a striking succulent belonging to the Cactaceae family. Its unique appearance and captivating characteristics make it a sought-after addition to gardens and courtyards beautification. In June 2023, 20-30% of D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!