Signalling triggered by adhesion to the extracellular matrix plays a key role in the spatial orientation of epithelial polarity and formation of lumens in glandular tissues. Phosphoinositide 3-kinase signalling in particular is known to influence the polarization process during epithelial cell morphogenesis. Here, using Madin-Darby canine kidney epithelial cells grown in 3D culture, we show that the p110δ isoform of phosphoinositide 3-kinase co-localizes with focal adhesion proteins at the basal surface of polarized cells. Pharmacological, siRNA- or kinase-dead-mediated inhibition of p110δ impair the early stages of lumen formation, resulting in inverted polarized cysts, with no laminin or type IV collagen assembly at cell/extracellular matrix contacts. p110δ also regulates the organization of focal adhesions and membrane localization of dystroglycan. Thus, we uncover a previously unrecognized role for p110δ in epithelial cells in the orientation of the apico-basal axis and lumen formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094449PMC
http://dx.doi.org/10.1038/ncomms6937DOI Listing

Publication Analysis

Top Keywords

phosphoinositide 3-kinase
12
lumen formation
12
epithelial cells
8
p110δ
5
3-kinase p110δ
4
p110δ promotes
4
promotes lumen
4
formation
4
formation enhancement
4
enhancement apico-basal
4

Similar Publications

Objective: To explore the clinical and genetic characteristics of two children diagnosed with two rare genetic diseases simultaneously.

Methods: Two children with comorbidity of two genetic diseases due to dual genetic mutations diagnosed at the Third Affiliated Hospital of Zhengzhou University respectively in May 2022 and March 2023 were selected as the study subjects. Clinical and genetic data of the two children were retrospectively analyzed.

View Article and Find Full Text PDF

Insulin receptor substrate (IRS)-1 and IRS-2 are major molecules that transduce signals from insulin and insulin-like growth factor-I receptors. The physiological functions of these proteins have been intensively investigated in mice, while little is known in other animals. Our previous study showed that the disruption of IRS-2 impairs body growth but not glucose tolerance or insulin sensitivity in rats, which led us to hypothesize that IRS-1 plays more pivotal roles in insulin functions than IRS-2.

View Article and Find Full Text PDF

Exosome-delivered circular RNAs (circRNAs) are recognized as a key mechanism that regulates osteosarcoma (OS) progression. The purpose of this study is to discover the role of a novel circRNA hsa_circ_0000116 from exosomes in OS progression. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify the exosomes isolated from two OS cell lines (HOS and MG-63).

View Article and Find Full Text PDF

Aims: This study aimed to discover the regulatory mechanisms contributing to angiogenesis in nonproliferative diabetic retinopathy (NPDR).

Materials And Methods: This study employed a case-control design involving type 2 diabetes patients with and without NPDR. We utilised microRNA sequencing to analyse plasma and retina samples from T2D patients, to identify both existing and novel microRNAs relevant to retinal health.

View Article and Find Full Text PDF

Vitamin A enhances PI3K/Akt signaling and mitigates enterocyte apoptosis in a mouse model of necrotizing enterocolitis.

Pediatr Surg Int

January 2025

Department of Neonatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.

Purpose: This study aims to elucidate the roles of the PI3K-Akt signaling pathway and enterocyte apoptosis in necrotizing enterocolitis (NEC) pathogenesis and investigate the impact of vitamin A intervention on these factors.

Methods: We employed an NEC mouse model and administered vitamin A treatment. Retinol levels in mouse blood were quantified using ELISA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!