β-arrestin1 is critical for the full activation of NLRP3 and NLRC4 inflammasomes.

J Immunol

State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;

Published: February 2015

Inflammasomes are multiprotein complexes that trigger the activation of caspase-1 and the maturation of IL-1β, which are critical for inflammation and control of pathogen infection. Although the function of inflammasomes in immune response and disease development is well studied, the molecular mechanism by which inflammasomes are activated and assembled remains largely unknown. In this study, we found that β-arrestin1, a key regulator of the G protein-coupled receptor signaling pathway, was required for nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain-containing 3 (NLRP3) and NLR family CARD domain-containing protein 4 (NLRC4) inflammasome-mediated IL-1β production and caspase-1 activation, but it had no effect on absent in melanoma 2 (AIM2) inflammasome activation. Moreover, apoptosis-associated speck-like protein containing a CARD (ASC) pyroptosome, which is ASC aggregation mediating caspase-1 activation, was also impaired in β-arrestin1-deficient macrophages upon NLRP3 or NLRC4, but not AIM2 inflammasome activation. Mechanistic study revealed that β-arrestin1 specifically interacted with NLRP3 and NLRC4 and promoted their self-oligomerization. In vivo, in a monosodium urate crystal (MSU)-induced NLRP3-dependent peritonitis model, MSU-induced IL-1β production and neutrophil flux were significantly reduced in β-arrestin1 knockout mice. Additionally, β-arrestin1 deficiency rescued the weight loss of mice upon log-phase Salmonella typhimurium infection, with less IL-1β production. Taken together, our results indicate that β-arrestin1 plays a critical role in the assembly and activation of two major canonical inflammasomes, and it may provide a new therapeutic target for inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1401989DOI Listing

Publication Analysis

Top Keywords

nlrp3 nlrc4
12
il-1β production
12
nlr family
8
caspase-1 activation
8
aim2 inflammasome
8
inflammasome activation
8
activation
7
β-arrestin1
6
inflammasomes
5
β-arrestin1 critical
4

Similar Publications

The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role.

View Article and Find Full Text PDF

Scutellarin inhibits pyroptosis via selective autophagy degradation of p30/GSDMD and suppression of ASC oligomerization.

Pharmacol Res

January 2025

MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Most of the pyroptosis inhibitors targeted Gasdermin D (GSDMD) are functioning by restraining GSDMD-N (p30) oligomerization. For the first time, this work discovered a pyroptosis inhibitor taking effect by degrading p30 and GSDMD. As the principal bioactive constituent in Erigeron breviscapus, scutellarin (SCU) assumes a pivotal role in the realm of anti-inflammatory processes.

View Article and Find Full Text PDF

Carbonaceous cores serve as surrogates for environmental particulate matter inducing vascular endothelial inflammation via inflammasome activation.

J Hazard Mater

December 2024

Key laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China. Electronic address:

Ambient particulate matter (PM) exposure is a known risk factor for cardiovascular diseases. Epidemiological studies have shown the association between PM exposure and vascular complications, including vasculitis, embolism, hypertension, stroke, and atherosclerosis. However, the exact mechanisms underlying its vascular toxicity, especially in relation to short-term exposures, remain incompletely understood.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the potential of chlorquinaldol (CQ), an antimicrobial agent, as a specific inhibitor of the NLRP3 inflammasome, which is linked to various inflammatory diseases, highlighting its promise for drug repurposing.
  • - CQ effectively suppresses NLRP3 inflammasome activation in both mouse and human macrophages primarily by blocking the interaction between NLRP3 and ASC, while having minimal impact on other inflammasomes like NLRC4 and AIM2.
  • - In vivo tests showed that CQ significantly improves conditions in mouse models of LPS-induced peritonitis, DSS-induced colitis, and MSU-induced gouty arthritis, suggesting its therapeutic potential for treating NLRP3-related
View Article and Find Full Text PDF

Abnormal activation of NLRP3 inflammasome causes the progression of gout, and no small-molecule inhibitor of NLRP3 has been approved yet for clinical use. In this study we established a nigericin-induced inflammasome activation cell model for screening of a natural product library by measuring IL-1β secretion in cell supernatants. Among 432 compounds tested, we found that hypocrellin A (HA), one of the major active components of a traditional ethnic medicinal fungus Hypocrella bambusea in the Northwest Yunnan of China, exhibited the highest inhibition on IL-1β production (IC = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!