Scintigraphic tracking of mesenchymal stem cells after portal, systemic intravenous and splenic administration in healthy beagle dogs.

Vet Radiol Ultrasound

Departments of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, One Shields ave, Davis, CA, 95616.

Published: May 2016

Mesenchymal stem cells have been proposed to treat liver disease in the dog. The objective of this study was to compare portal, systemic intravenous and splenic injections for administration of mesenchymal stem cells to target the liver in healthy beagle dogs. Four healthy beagle dogs were included in the study. Each dog received mesenchymal stem cells via all three delivery methods in randomized order, 1 week apart. Ten million fat-derived allogeneic mesenchymal stem cells labeled with Technetium-99m (99mTc)-hexamethyl-propylene amine oxime(HMPAO) were used for each injection. Right lateral, left lateral, ventral, and dorsal scintigraphic images were obtained with a gamma camera equipped with a low-energy all-purpose collimator immediately after injection and 1, 6, and 24 h later. Mesenchymal stem cells distribution was assessed subjectively using all four views. Pulmonary, hepatic, and splenic uptake was quantified from the right lateral view, at each time point. Portal injection resulted in diffuse homogeneous high uptake through the liver, whereas the systemic intravenous injection led to mesenchymal stem cell trapping in the lungs. After splenic injection, mild splenic retention and high homogeneous diffuse hepatic uptake were observed. Systemic injection of mesenchymal stem cells may not be a desirable technique for liver therapy due to pulmonary trapping. Splenic injection represents a good alternative to portal injection. Scintigraphic tracking with 99mTc-HMPAO is a valuable technique for assessing mesenchymal stem cells distribution and quantification shortly after administration. Data obtained at 24 h should be interpreted cautiously due to suboptimal labeling persistence.

Download full-text PDF

Source
http://dx.doi.org/10.1111/vru.12243DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
36
stem cells
32
systemic intravenous
12
healthy beagle
12
beagle dogs
12
mesenchymal
9
stem
9
scintigraphic tracking
8
cells
8
portal systemic
8

Similar Publications

The endonuclease activity of MCPIP1 controls the neoplastic transformation of epithelial cells via the c-Met/CD44 axis.

Cell Commun Signal

January 2025

Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN.

View Article and Find Full Text PDF

Purpose Of Review: To review evidence supporting human umbilical cord mesenchymal stem cells (UC-MSC) as an innovative model system advancing obesity precision medicine.

Recent Findings: Obesity prevalence is increasing rapidly and exposures during fetal development can impact individual susceptibility to obesity. UC-MSCs exhibit heterogeneous phenotypes associated with maternal exposures and predictive of child cardiometabolic outcomes.

View Article and Find Full Text PDF

FOXG1 promotes osteogenesis of bone marrow-derived mesenchymal stem cells by activating autophagy through regulating USP14.

Commun Biol

January 2025

Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction.

View Article and Find Full Text PDF

Combination of rapamycin and adipose-derived mesenchymal stromal cells enhances therapeutic potential for osteoarthritis.

Stem Cell Res Ther

January 2025

IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.

Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!