Angiotensin-converting enzyme (ACE), a membrane-bound zinc metallopeptidase, catalyzes the formation of Angiotensin-II (AngII) and the deactivation of bradykinin in the renin-angiotensin-aldosterone and kallikrein-kinin systems. As a hydrolysis product of ACE, AngII is regarded as an inhibitor and displays stronger competitive inhibition in the C-domain than the N-domain of ACE. However, the AngII binding differences between the two domains and the mechanisms behind AngII dissociation from the C-domain are rarely explored. In this work, molecular docking, Molecular Mechanics/Poisson-Boltzmann Surface Area calculation, and steered molecular dynamics (SMD) are applied to explore the structures and interactions in the binding or unbinding of AngII with the two domains of human somatic ACE. Calculated free energy values suggest that the C-domain-AngII complex is more stable than the N-domain-AngII complex, consistent with available experimental data. SMD simulation results imply that electrostatic interaction is dominant in the dissociation of AngII from the C-domain. Moreover, Gln106, Asp121, Glu123, and Tyr213 may be the key residues in the unbinding pathway of AngII. The simulation results in our work provide insights into the interactions between the two domains of ACE and its natural peptide inhibitor AngII at a molecular level. Moreover, the results provide theoretical clues for the design of new inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2015.1007167DOI Listing

Publication Analysis

Top Keywords

domains human
8
human somatic
8
angiotensin-converting enzyme
8
calculation steered
8
steered molecular
8
molecular dynamics
8
angii
8
ace angii
8
molecular
5
ace
5

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Sage Bionetworks, Seattle, WA, USA.

Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.

View Article and Find Full Text PDF

Background: Vaxxinity is developing an active immunotherapy targeting Tau for Alzheimer's disease (AD) and other tauopathies. VXX-301 is a multi-epitope vaccine designed to target the N-terminal and repeat domains of Tau. This design enables targeting multiple forms of Tau thought to contribute to Tau associated pathologies.

View Article and Find Full Text PDF

Background: Alzheimer's disease neuropathology involves the deposition in brain of aggregates enriched with microtubule-binding-region (MTBR) of tau adopting an abnormal conformation between residues 306-378 in the core of aggregates. Anti-tau drugs targeting around this domain have the potential to interfere with the cell-to-cell propagation of pathological tau. Bepranemab is a humanized monoclonal Ig4 antibody binding to tau residues 235-250.

View Article and Find Full Text PDF

Background: Studies show that tube feeding does not improve clinical outcomes, and professional guidelines recommend against its use for individuals with advanced dementia. Yet, our preliminary work demonstrates a preference for tube feeding among Chinese-American dementia caregivers. We propose linguistic and cultural adaptation of "Making Choices: Feeding Options for Patients with Dementia (MCFODA) to create the Chinese version of this efficacious decision aid intervention.

View Article and Find Full Text PDF

Background: Approximately 25% of adults 65+ are socially isolated. Social isolation (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!