Leishmania are kinetoplastid parasites that cause the sandfly-transmitted disease leishmaniasis. To maintain fitness throughout their infectious life cycle, Leishmania must undergo rapid metabolic adaptations to the dramatically distinct environments encountered during transition between sandfly and vertebrate hosts. We performed proteomic and immunoblot analyses of attenuated L. major strains deficient for LACK, the Leishmania ortholog of the mammalian receptor for activated c kinase (RACK1), that is important for parasite thermotolerance and virulence. This approach identified cytochrome c oxidase (LmCOX) subunit IV as a LACK-dependent fitness protein. Consistent with decreased levels of LmCOX subunit IV at mammalian temperature, and in amastigotes, LmCOX activity and mitochondrial function were also impaired in LACK-deficient L. major under these conditions. Importantly, overexpression of LmCOX subunit IV in LACK-deficient L. major restored thermotolerance and macrophage infectivity. Interestingly, overexpression of LmCOX subunit IV enhanced LmCOX subunit VI expression at mammalian temperature. Collectively, our data suggest LACK promotes Leishmania adaptation to the mammalian host environment by sustaining LmCOX subunit IV expression and hence energy metabolism in response to stress stimuli such as heat. These findings extend the repertoire of RACK1 protein utility to include a role in mitochondrial function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6055511 | PMC |
http://dx.doi.org/10.1111/mmi.12924 | DOI Listing |
mSphere
March 2019
Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
During their parasitic life cycle, through sandflies and vertebrate hosts, parasites confront strikingly different environments, including abrupt changes in pH and temperature, to which they must rapidly adapt. These adaptations include alterations in gene expression, metabolism, and morphology, allowing them to thrive as promastigotes in the sandfly and as intracellular amastigotes in the vertebrate host. A critical aspect of metabolic adaptation to these changes is maintenance of efficient mitochondrial function in the hostile vertebrate environment.
View Article and Find Full Text PDFMol Microbiol
April 2015
Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
Leishmania are kinetoplastid parasites that cause the sandfly-transmitted disease leishmaniasis. To maintain fitness throughout their infectious life cycle, Leishmania must undergo rapid metabolic adaptations to the dramatically distinct environments encountered during transition between sandfly and vertebrate hosts. We performed proteomic and immunoblot analyses of attenuated L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!